69 research outputs found

    Diagnostics of electron beam properties from the simultaneous hard X-ray and microwave emission in the 10 March 2001 flare

    Full text link
    Simultaneous simulation of HXR and MW emission with the same populations of electrons is still a great challenge for interpretation of observations in real events. In this paper we apply the FP kinetic model of precipitation of electron beam with energy range from 12 keV to 1.2 MeV to the interpretation of X-ray and microwave emissions observed in the flare of 10 March 2001. Methods. The theoretical HXR and MW emissions were calculated by using the distribution functions of electron beams found by solving time-dependent Fokker-Planck approach in a converging magnetic field (Zharkova at al., 2010; Kuznetsov and Zharkova, 2010) for anisotropic scattering of beam electrons on the ambient particles in Coloumb collisions and Ohmic losses. The simultaneous observed HXR photon spectra and frequency distribution of MW emission and polarization were fit by those simulated from FP models which include the effects of electric field induced by beam electrons and precipitation into a converging magnetic loop. Magnetic field strengths in the footpoints on the photosphere were updated with newly calibrated SOHO/MDI data. The observed HXR energy spectrum above 10 keV is shown to be a double power law which was fit precisely by the photon HXR spectrum simulated for the model including the self-induced electric field but without magnetic convergence. The MW emission simulated for different models of electron precipitation revealed a better fit to the observed distribution at higher frequencies for the models combining collisions and electric field effects with a moderate magnetic field convergence of 2. The MW simulations were able to reproduce closely the main features of the MW emission observed at higher frequencies.Comment: 17 pages, 10 figures in press; A&A 201

    Spectral and spatial observations of microwave spikes and zebra structure in the short radio burst of May 29, 2003

    Full text link
    The unusual radio burst of May 29, 2003 connected with the M1.5 flare in AR 10368 has been analyzed. It was observed by the Solar Broadband Radio Spectrometer (SBRS/Huairou station, Beijing) in the 5.2-7.6 GHz range. It proved to be only the third case of a neat zebra structure appearing among all observations at such high frequencies. Despite the short duration of the burst (25 s), it provided a wealth of data for studying the superfine structure with millisecond resolution (5 ms). We localize the site of emission sources in the flare region, estimate plasma parameters in the generation sites, and suggest applicable mechanisms for interpretating spikes and zebra-structure generation. Positions of radio bursts were obtained by the Siberian Solar Radio Telescope (SSRT) (5.7 GHz) and Nobeyama radioheliograph (NoRH) (17 GHz). The sources in intensity gravitated to tops of short loops at 17 GHz, and to long loops at 5.7 GHz. Short pulses at 17 GHz (with a temporal resolution of 100 ms) are registered in the R-polarized source over the N-magnetic polarity (extraordinary mode). Dynamic spectra show that all the emission comprised millisecond pulses (spikes) of 5-10 ms duration in the instantaneous band of 70 to 100 MHz, forming the superfine structure of different bursts, essentially in the form of fast or slow-drift fibers and various zebra-structure stripes. Five scales of zebra structures have been singled out. As the main mechanism for generating spikes (as the initial emission) we suggest the coalescence of plasma waves with whistlers in the pulse regime of interaction between whistlers and ion-sound waves. In this case one can explain the appearance of fibers and sporadic zebra-structure stripes exhibiting the frequency splitting.Comment: 11 pages, 5 figures, in press; A&A 201

    Study of flare energy release using events with numerous type III-like bursts in microwaves

    Full text link
    The analysis of narrowband drifting of type III-like structures in radio bursts dynamic spectra allows to obtain unique information about primary energy release mechanisms in solar flares. The SSRT spatially resolved images and a high spectral and temporal resolution allow direct determination not only the positions of its sources but also the exciter velocities along the flare loop. Practically, such measurements are possible during some special time intervals when the SSRT (about 5.7 GHz) is observing the flare region in two high-order fringes; thus, two 1D scans are recorded simultaneously at two frequency bands. The analysis of type III-like bursts recorded during the flare 14 Apr 2002 is presented. Using-muliwavelength radio observations recorded by SSRT, SBRS, NoRP, RSTN we study an event with series of several tens of drifting microwave pulses with drift rates in the range from -7 to 13 GHz/s. The sources of the fast-drifting bursts were located near the top of the flare loop in a volume of a few Mm in size. The slow drift of the exciters along the flare loop suggests a high pitch-anisotropy of the emitting electrons.Comment: 16 pages, 6 figures, Solar Physics, in press, 201
    corecore