2,342 research outputs found

    Spin characterization of systematics in CMB surveys – a comprehensive formalism

    Get PDF
    The CMB B-mode polarization signal – both the primordial gravitational wave signature and the signal sourced by lensing – is subject to many contaminants from systematic effects. Of particular concern are systematics that result in mixing of signals of different ‘spin’, particularly leakage from the much larger spin-0 intensity signal to the spin-2 polarization signal. We present a general formalism, which can be applied to arbitrary focal plane setups, that characterizes signals in terms of their spin. We provide general expressions to describe how spin-coupled signals observed by the detectors manifest at map-level, in the harmonic domain, and in the power spectra, focusing on the polarization spectra – the signals of interest for upcoming CMB surveys. We demonstrate the presence of a previously unidentified cross-term between the systematic and the intrinsic sky signal in the power spectrum, which in some cases can be the dominant source of contamination. The formalism is not restricted to intensity to polarization leakage but provides a complete elucidation of all leakage including polarization mixing, and applies to both full and partial (masked) sky surveys, thus covering space-based, balloon-borne, and ground-based experiments. Using a pair-differenced setup, we demonstrate the formalism by using it to completely characterize the effects of differential gain and pointing systematics, incorporating both intensity leakage and polarization mixing. We validate our results with full time ordered data simulations. Finally, we show in an Appendix that an extension of simple binning map-making to include additional spin information is capable of removing spin-coupled systematics during the map-making process

    The justification of anti-terrorism legislation in Australia and Canada between September 17, 2001 and March 31, 2003

    Get PDF
    Few countries had seen the necessity for anti-terrorism legislation prior to 11 September 2001 (9/11) but that worldwide shock resulted in the United Nations Security Council Resolution 1373 calling for measures to combat international terrorism on 28 September 2001. Australia and Canada, middle powers at the United Nations, and close allies with the United States, were among the first to react in support of counter-terrorism action, Australia invoking the ANZUS Security Treaty between Australia, New Zealand, and the United States of America, and Canada supporting the response to 9/11 through the North Atlantic Treaty Organization. Both countries were quick to begin drafting anti-terrorism legislation that would fulfil the United Nations requirements under Resolution 1373 targeting the financing of terrorism and other actions. Canada introduced its anti-terrorism legislation on 15 October 2001 and Australia, having had an election in November 2001, began debating its anti-terrorism legislation on 13 February 2002. This dissertation investigates the legislative discourse on anti-terrorism laws as the elected Members of Parliament in Australia and Canada debated the proposed new measures between 17 September 2001 and 31 March 2003, the period covering the passage of most of the early anti-terrorism legislation. The research aims to determine how the new laws, necessary at the time because of an increased awareness of the international character of terrorism, would be justified considering the increased law enforcement powers proposed in parts of the new legislation. There was a perceived lack of capacity to deal with terrorism in existing criminal laws. Terrorist acts were identifiable as crimes but were regarded differently and prevention was one aspect of this difference. Terrorism seemed to call for differentiation in the law but a major difficulty was in clarifying inherent characteristics of terrorism. The verbatim records of parliamentary debates in both countries, documented in Hansard, provided an authoritative source of the views expressed by politicians, on the government side introducing and supporting the reasoning for the new legislation, and on the opposition side by the several political factions represented, each with a party policy and purpose to uphold. Forty-five themes were identified as topics through which anti-terrorism legislation was debated. Every time a Member of Parliament spoke on a topic related to a theme, an instance was recorded, creating a database of over 5,000 instances. The four key topics forming the basis for the new legislation were the Terrorism Event, National Security, Criminal Justice and Anti-Terrorism Legislation. Statistical comparison of the discourse quantities produced in relation to each theme did not support the hypothesis that the introduction of Anti-Terrorism legislation was discussed predominantly as a national security issue in Australia and a criminal justice issue in Canada

    Spin-based removal of instrumental systematics in 21cm intensity mapping surveys

    Get PDF
    Upcoming cosmological intensity mapping surveys will open new windows on the Universe, but they must first overcome a number of significant systematic effects, including polarization leakage. We present a formalism that uses scan strategy information to model the effect of different instrumental systematics on the recovered cosmological intensity signal for `single-dish' (autocorrelation) surveys. This modelling classifies different systematics according to their spin symmetry, making it particularly relevant for dealing with polarization leakage. We show how to use this formalism to calculate the expected contamination from different systematics as a function of the scanning strategy. Most importantly, we show how systematics can be disentangled from the intensity signal based on their spin properties via map-making. We illustrate this, using a set of toy models, for some simple instrumental systematics, demonstrating the ability to significantly reduce the contamination to the observed intensity signal. Crucially, unlike existing foreground removal techniques, this approach works for signals that are non-smooth in frequency, e.g. polarized foregrounds. These map-making approaches are simple to apply and represent an orthogonal and complementary approach to existing techniques for removing systematics from upcoming 21cm intensity mapping surveys.Comment: 19 pages, 14 Figures, 2 Tables, published in MNRA

    Low-Temperature Rapid Synthesis and Superconductivity of Fe-Based Oxypnictide Superconductors

    Full text link
    we were able to develop a novel method to synthesize Fe-based oxypnictide superconductors. By using LnAs and FeO as the starting materials and a ball-milling process prior to solid-state sintering, Tc as high as 50.7 K was obtained with the sample of Sm 0.85Nd0.15FeAsO0.85F0.15 prepared by sintering at temperatures as low as 1173 K for times as short as 20 min.Comment: 2 pages,2 figures, 1 tabl

    Toward Interpretable Deep Reinforcement Learning with Linear Model U-Trees

    Full text link
    Deep Reinforcement Learning (DRL) has achieved impressive success in many applications. A key component of many DRL models is a neural network representing a Q function, to estimate the expected cumulative reward following a state-action pair. The Q function neural network contains a lot of implicit knowledge about the RL problems, but often remains unexamined and uninterpreted. To our knowledge, this work develops the first mimic learning framework for Q functions in DRL. We introduce Linear Model U-trees (LMUTs) to approximate neural network predictions. An LMUT is learned using a novel on-line algorithm that is well-suited for an active play setting, where the mimic learner observes an ongoing interaction between the neural net and the environment. Empirical evaluation shows that an LMUT mimics a Q function substantially better than five baseline methods. The transparent tree structure of an LMUT facilitates understanding the network's learned knowledge by analyzing feature influence, extracting rules, and highlighting the super-pixels in image inputs.Comment: This paper is accepted by ECML-PKDD 201

    Single-photon emitting diode in silicon carbide

    Full text link
    Electrically driven single-photon emitting devices have immediate applications in quantum cryptography, quantum computation and single-photon metrology. Mature device fabrication protocols and the recent observations of single defect systems with quantum functionalities make silicon carbide (SiC) an ideal material to build such devices. Here, we demonstrate the fabrication of bright single photon emitting diodes. The electrically driven emitters display fully polarized output, superior photon statistics (with a count rate of >>300 kHz), and stability in both continuous and pulsed modes, all at room temperature. The atomic origin of the single photon source is proposed. These results provide a foundation for the large scale integration of single photon sources into a broad range of applications, such as quantum cryptography or linear optics quantum computing.Comment: Main: 10 pages, 6 figures. Supplementary Information: 6 pages, 6 figure

    Scintillation in the Circinus Galaxy water megamasers

    Full text link
    We present observations of the 22 GHz water vapor megamasers in the Circinus galaxy made with the Tidbinbilla 70m telescope. These observations confirm the rapid variability seen earlier by Greenhill et al (1997). We show that this rapid variability can be explained by interstellar scintillation, based on what is now known of the interstellar scintillation seen in a significant number of flat spectrum AGN. The observed variability cannot be fully described by a simple model of either weak or diffractive scintillation.Comment: 10 pages, 5 figures. AJ accepte

    High-fidelity adiabatic inversion of a 31P^{31}\mathrm{P} electron spin qubit in natural silicon

    Get PDF
    The main limitation to the high-fidelity quantum control of spins in semiconductors is the presence of strongly fluctuating fields arising from the nuclear spin bath of the host material. We demonstrate here a substantial improvement in single-qubit gate fidelities for an electron spin qubit bound to a 31^{31}P atom in natural silicon, by applying adiabatic inversion instead of narrow-band pulses. We achieve an inversion fidelity of 97%, and we observe signatures in the spin resonance spectra and the spin coherence time that are consistent with the presence of an additional exchange-coupled donor. This work highlights the effectiveness of adiabatic inversion techniques for spin control in fluctuating environments.Comment: 4 pages, 2 figure

    Community characterization of heterogeneous complex systems

    Full text link
    We introduce an analytical statistical method to characterize the communities detected in heterogeneous complex systems. By posing a suitable null hypothesis, our method makes use of the hypergeometric distribution to assess the probability that a given property is over-expressed in the elements of a community with respect to all the elements of the investigated set. We apply our method to two specific complex networks, namely a network of world movies and a network of physics preprints. The characterization of the elements and of the communities is done in terms of languages and countries for the movie network and of journals and subject categories for papers. We find that our method is able to characterize clearly the identified communities. Moreover our method works well both for large and for small communities.Comment: 8 pages, 1 figure and 2 table

    Bell's inequality violation with spins in silicon

    Full text link
    Bell's theorem sets a boundary between the classical and quantum realms, by providing a strict proof of the existence of entangled quantum states with no classical counterpart. An experimental violation of Bell's inequality demands simultaneously high fidelities in the preparation, manipulation and measurement of multipartite quantum entangled states. For this reason the Bell signal has been tagged as a single-number benchmark for the performance of quantum computing devices. Here we demonstrate deterministic, on-demand generation of two-qubit entangled states of the electron and the nuclear spin of a single phosphorus atom embedded in a silicon nanoelectronic device. By sequentially reading the electron and the nucleus, we show that these entangled states violate the Bell/CHSH inequality with a Bell signal of 2.50(10). An even higher value of 2.70(9) is obtained by mapping the parity of the two-qubit state onto the nuclear spin, which allows for high-fidelity quantum non-demolition measurement (QND) of the parity. Furthermore, we complement the Bell inequality entanglement witness with full two-qubit state tomography exploiting QND measurement, which reveals that our prepared states match the target maximally entangled Bell states with >>96\% fidelity. These experiments demonstrate complete control of the two-qubit Hilbert space of a phosphorus atom, and show that this system is able to maintain its simultaneously high initialization, manipulation and measurement fidelities past the single-qubit regime.Comment: 10 pages, 3 figures, 1 table, 4 extended data figure
    • …
    corecore