68 research outputs found
Patient-specific data fusion for cancer stratification and personalised treatment
According to Cancer Research UK, cancer is a leading cause of death accounting for more than one in four of all deaths in 2011. The recent advances in experimental technologies in cancer research have resulted in the accumulation of large amounts of patient-specific datasets, which provide complementary information on the same cancer type. We introduce a versatile data fusion (integration) framework that can effectively integrate somatic mutation data, molecular interactions and drug chemical data to address three key challenges in cancer research: stratification of patients into groups having different clinical outcomes, prediction of driver genes whose mutations trigger the onset and development of cancers, and repurposing of drugs treating particular cancer patient groups. Our new framework is based on graph-regularised non-negative matrix tri-factorization, a machine learning technique for co-clustering heterogeneous datasets. We apply our framework on ovarian cancer data to simultaneously cluster patients, genes and drugs by utilising all datasets.We demonstrate superior performance of our method over the state-of-the-art method, Network-based Stratification, in identifying three patient subgroups that have significant differences in survival outcomes and that are in good agreement with other clinical data. Also, we identify potential new driver genes that we obtain by analysing the gene clusters enriched in known drivers of ovarian cancer progression. We validated the top scoring genes identified as new drivers through database search and biomedical literature curation. Finally, we identify potential candidate drugs for repurposing that could be used in treatment of the identified patient subgroups by targeting their mutated gene products. We validated a large percentage of our drug-target predictions by using other databases and through literature curation
Network analytics in the age of big data
We live in a complex world of interconnected entities. In all areas of human endeavor, from biology to medicine, economics, and climate science, we are flooded with large-scale data sets. These data sets describe intricate real-world systems from different and complementary viewpoints, with entities being modeled as nodes and their connections as edges, comprising large networks. These networked data are a new and rich source of domain-specific information, but that information is currently largely hidden within the complicated wiring patterns. Deciphering these patterns is paramount, because computational analyses of large networks are often intractable, so that many questions we ask about the world cannot be answered exactly, even with unlimited computer power and time (1). Hence, the only hope is to answer these questions approximately (that is, heuristically) and prove how far the approximate answer is from the exact, unknown one, in the worst case. On page 163 of this issue, Benson et al. (2) take an important step in that direction by providing a scalable heuristic framework for grouping entities based on their wiring patterns and using the discovered patterns for revealing the higher-order organizational principles of several real-world networked systems
Integrative methods for analyzing big data in precision medicine
We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of āBig Dataā in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face
Unified Alignment of Protein-Protein Interaction Networks
Paralleling the increasing availability of protein-protein interaction (PPI) network data, several network alignment methods have been proposed. Network alignments have been used to uncover functionally conserved network parts and to transfer annotations. However, due to the computational intractability of the network alignment problem, aligners are heuristics providing divergent solutions and no consensus exists on a gold standard, or which scoring scheme should be used to evaluate them. We comprehensively evaluate the alignment scoring schemes and global network aligners on large scale PPI data and observe that three methods, HUBALIGN, L-GRAAL and NATALIE, regularly produce the most topologically and biologically coherent alignments. We study the collective behaviour of network aligners and observe that PPI networks are almost entirely aligned with a handful of aligners that we unify into a new tool, Ulign. Ulign enables complete alignment of two networks, which traditional global and local aligners fail to do. Also, multiple mappings of Ulign define biologically relevant soft clusterings of proteins in PPI networks, which may be used for refining the transfer of annotations across networks. Hence, PPI networks are already well investigated by current aligners, so to gain additional biological insights, a paradigm shift is needed. We propose such a shift come from aligning all available data types collectively rather than any particular data type in isolation from others
Graphlet Laplacians for topology-function and topology-disease relationships
Motivation:
Laplacian matrices capture the global structure of networks and are widely used to study biological networks. However, the local structure of the network around a node can also capture biological information. Local wiring patterns are typically quantified by counting how often a node touches different graphlets (small, connected, induced sub-graphs). Currently available graphlet-based methods do not consider whether nodes are in the same network neighbourhood. To combine graphlet-based topological information and membership of nodes to the same network neighbourhood, we generalize the Laplacian to the Graphlet Laplacian, by considering a pair of nodes to be āadjacentā if they simultaneously touch a given graphlet.
Results:
We utilize Graphlet Laplacians to generalize spectral embedding, spectral clustering and network diffusion. Applying Graphlet Laplacian-based spectral embedding, we visually demonstrate that Graphlet Laplacians capture biological functions. This result is quantified by applying Graphlet Laplacian-based spectral clustering, which uncovers clusters enriched in biological functions dependent on the underlying graphlet. We explain the complementarity of biological functions captured by different Graphlet Laplacians by showing that they capture different local topologies. Finally, diffusing pan-cancer gene mutation scores based on different Graphlet Laplacians, we find complementary sets of cancer-related genes. Hence, we demonstrate that Graphlet Laplacians capture topology-function and topology-disease relationships in biological networks.
Availability and implementation:
http://www0.cs.ucl.ac.uk/staff/natasa/graphlet-laplacian/index.htm
Integrative methods for analysing big data in precision medicine
We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of āBig Dataā in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face
Graphlet-based Characterization of Directed Networks
We are flooded with large-scale, dynamic, directed, networked data. Analyses requiring exact comparisons between networks are computationally intractable, so new methodologies are sought. To analyse directed networks, we extend graphlets (small induced sub-graphs) and their degrees to directed data. Using these directed graphlets, we generalise state-of-the-art network distance measures (RGF, GDDA and GCD) to directed networks and show their superiority for comparing directed networks. Also, we extend the canonical correlation analysis framework that enables uncovering the relationships between the wiring
patterns around nodes in a directed network and their expert annotations. On directed World Trade Networks (WTNs), our methodology allows uncovering the core-broker-periphery structure of the WTN, predicting the economic attributes of a country, such as its gross domestic product, from its wiring patterns in the WTN for up-to ten years in the future. It does so by enabling us to track the dynamics of a countryās positioning in the WTN over years. On directed metabolic networks, our framework
yields insights into preservation of enzyme function from the network wiring patterns rather than from sequence data. Overall, our methodology enables advanced analyses of directed networked data from any area of science, allowing domain-specific interpretation of a directed networkās topology
Chromatin network markers of leukemia
MOTIVATION:
The structure of chromatin impacts gene expression. Its alteration has been shown to coincide with the occurrence of cancer. A key challenge is in understanding the role of chromatin structure (CS) in cellular processes and its implications in diseases.
RESULTS:
We propose a comparative pipeline to analyze CSs and apply it to study chronic lymphocytic leukemia (CLL). We model the chromatin of the affected and control cells as networks and analyze the network topology by state-of-the-art methods. Our results show that CSs are a rich source of new biological and functional information about DNA elements and cells that can complement proteināprotein and co-expression data. Importantly, we show the existence of structural markers of cancer-related DNA elements in the chromatin. Surprisingly, CLL driver genes are characterized by specific local wiring patterns not only in the CS network of CLL cells, but also of healthy cells. This allows us to successfully predict new CLL-related DNA elements. Importantly, this shows that we can identify cancer-related DNA elements in other cancer types by investigating the CS network of the healthy cell of origin, a key new insight paving the road to new therapeutic strategies. This gives us an opportunity to exploit chromosome conformation data in healthy cells to predict new drivers.
AVAILABILITY AND IMPLEMENTATION:
Our predicted CLL genes and RNAs are provided as a free resource to the community at https://life.bsc.es/iconbi/chromatin/index.html.
SUPPLEMENTARY INFORMATION:
Supplementary data are available at Bioinformatics online
- ā¦