7,380 research outputs found

    Electronic structure of FeSe monolayer superconductors

    Get PDF
    We review a variety of theoretical and experimental results concerning electronic band structure of superconducting materials based on FeSe monolayers. Three type of systems are analyzed: intercalated FeSe systems A_xFe_2Se_{2-x}S_x and [Li_{1-x}Fe_xOH]FeSe as well as the single FeSe layer films on SrTiO_3 substrate. We present the results of detailed first principle electronic band structure calculations for these systems together with comparison with some experimental ARPES data. The electronic structure of these systems is rather different from that of typical FeAs superconductors, which is quite significant for possible microscopic mechanism of superconductivity. This is reflected in the absence of hole pockets of the Fermi surface at \Gamma-point in Brillouin zone, so that there are no "nesting" properties of different Fermi surface pockets. LDA+DMFT calculations show that correlation effects on Fe-3d states in the single FeSe layer are not that strong as in most of FeAs systems. As a result, at present there is no theoretical understanding of the formation of rather "shallow" electronic bands at M points. LDA calculations show that the main difference in electronic structure of FeSe monolayer on SrTiO_3 substrate from isolated FeSe layer is the presence of the band of O-2p surface states of TiO_2 layer on the Fermi level together with Fe-3d states, which may be important for understanding the enhanced T_c values in this system. We briefly discuss the implications of our results for microscopic models of superconductivity.Comment: 21 pages, 13 figures, minor typos correcte

    Landau quantization and neutron emissions by nuclei in the crust of a magnetar

    Full text link
    Magnetars are neutron stars endowed with surface magnetic fields of the order of 1014101510^{14}-10^{15}~G, and with presumably much stronger fields in their interior. As a result of Landau quantization of electron motion, the neutron-drip transition in the crust of a magnetar is shifted to either higher or lower densities depending on the magnetic field strength. The impact of nuclear uncertainties is explored considering the recent series of Brussels-Montreal microscopic nuclear mass models. All these models are based on the Hartree-Fock-Bogoliubov method with generalized Skyrme functionals. They differ in their predictions for the symmetry energy coefficient at saturation, and for the stiffness of the neutron-matter equation of state. For comparison, we have also considered the very accurate but more phenomenological model of Duflo and Zuker. Although the equilibrium composition of the crust of a magnetar and the onset of neutron emission are found to be model dependent, the quantum oscillations of the threshold density are essentially universal.Comment: 7 pages, 2 figure

    Soliton dual comb in crystalline microresonators

    Full text link
    We present a novel compact dual-comb source based on a monolithic optical crystalline MgF2_2 multi-resonator stack. The coherent soliton combs generated in two microresonators of the stack with the repetition rate of 12.1 GHz and difference of 1.62 MHz provided after heterodyning a 300 MHz wide radio-frequency comb. Analogous system can be used for dual-comb spectroscopy, coherent LIDAR applications and massively parallel optical communications.Comment: 5 pages, 5 figure

    Polarization of Thermal X-rays from Isolated Neutron Stars

    Get PDF
    Since the opacity of a magnetized plasma depends on polarization of radiation, the radiation emergent from atmospheres of neutron stars with strong magnetic fields is expected to be strongly polarized. The degree of linear polarization, typically ~10-30%, depends on photon energy, effective temperature and magnetic field. The spectrum of polarization is more sensitive to the magnetic field than the spectrum of intensity. Both the degree of polarization and the position angle vary with the neutron star rotation period so that the shape of polarization pulse profiles depends on the orientation of the rotational and magnetic axes. Moreover, as the polarization is substantially modified by the general relativistic effects, observations of polarization of X-ray radiation from isolated neutron stars provide a new method for evaluating the mass-to-radius ratio of these objects, which is particularly important for elucidating the properties of the superdense matter in the neutron star interiors.Comment: 7 figures, to be published in Ap

    Space-Time Description of Scalar Particle Creation by a Homogeneous Isotropic Gravitational Field

    Full text link
    We give the generalization of the method of the space-time description of particle creation by a gravitational field for a scalar field with nonconformal coupling to the curvature. The space-time correlation function is obtained for a created pair of the quasi-particles, corresponding to a diagonal form of the instantaneous Hamiltonian. The case of an adiabatic change of the metric of homogeneous isotropic space is analyzed. We show that the created pairs of quasi-particles in de Sitter space should be interpreted as pairs of virtual particles.Comment: 7 pages, 3 figure

    Chandra Observation of PSR B1823-13 and its Pulsar Wind Nebula

    Full text link
    We report on an observation of the Vela-like pulsar B1823-13 and its synchrotron nebula with Chandra.The pulsar's spectrum fits a power-law model with a photon index Gamma_PSR=2.4 for the plausible hydrogen column density n_H=10^{22} cm^{-2}, corresponding to the luminosity L_PSR=8*10^{31} ergs s^{-1} in the 0.5-8 keV band, at a distance of 4 kpc. The pulsar radiation likely includes magnetospheric and thermal components, but they cannot be reliably separated because of the small number of counts detected and strong interstellar absorption. The pulsar is surrounded by a compact, 25''x 10'', pulsar wind nebula (PWN) elongated in the east-west direction, which includes a brighter inner component, 7''x 3'', elongated in the northeast-southwest direction. The slope of the compact PWN spectrum is Gamma_comp=1.3, and the 0.5-8 keV luminosity is L_comp~3*10^{32} ergs s^{-1}. The compact PWN is surrounded by asymmetric diffuse emission (extended PWN) seen up to at least 2.4' south of the pulsar, with a softer spectrum (Gamma_ext=1.9), and the 0.5-8 keV luminosity L_ext~10^{33}-10^{34} ergs s^{-1}. We also measured the pulsar's proper motion using archival VLA data: \mu_\alpha=23.0+/-2.5 mas yr^{-1}, \mu_\delta=-3.9+/-3.3 mas yr^{-1}, which corresponds to the transverse velocity v_perp=440 km s^{-1}. The direction of the proper motion is approximately parallel to the elongation of the compact PWN, but it is nearly perpendicular to that of the extended PWN and to the direction towards the center of the bright VHE gamma-ray source HESS J1825-137, which is likely powered by PSR B1823-13.Comment: 13 pages, 8 figures and 3 tables; submitted to Ap
    corecore