39,710 research outputs found

    On the finite-size behavior of systems with asymptotically large critical shift

    Full text link
    Exact results of the finite-size behavior of the susceptibility in three-dimensional mean spherical model films under Dirichlet-Dirichlet, Dirichlet-Neumann and Neumann-Neumann boundary conditions are presented. The corresponding scaling functions are explicitly derived and their asymptotics close to, above and below the bulk critical temperature TcT_c are obtained. The results can be incorporated in the framework of the finite-size scaling theory where the exponent λ\lambda characterizing the shift of the finite-size critical temperature with respect to TcT_c is smaller than 1/ν1/\nu, with ν\nu being the critical exponent of the bulk correlation length.Comment: 24 pages, late

    Universal transport signatures of Majorana fermions in superconductor-Luttinger liquid junctions

    Get PDF
    One of the most promising proposals for engineering topological superconductivity and Majorana fermions employs a spin-orbit coupled nanowire subjected to a magnetic field and proximate to an s-wave superconductor. When only part of the wire's length contacts to the superconductor, the remaining conducting portion serves as a natural lead that can be used to probe these Majorana modes via tunneling. The enhanced role of interactions in one dimension dictates that this configuration should be viewed as a superconductor-Luttinger liquid junction. We investigate such junctions between both helical and spinful Luttinger liquids, and topological as well as non-topological superconductors. We determine the phase diagram for each case and show that universal low-energy transport in these systems is governed by fixed points describing either perfect normal reflection or perfect Andreev reflection. In addition to capturing (in some instances) the familiar Majorana-mediated `zero-bias anomaly' in a new framework, we show that interactions yield dramatic consequences in certain regimes. Indeed, we establish that strong repulsion removes this conductance anomaly altogether while strong attraction produces dynamically generated effective Majorana modes even in a junction with a trivial superconductor. Interactions further lead to striking signatures in the local density of states and the line-shape of the conductance peak at finite voltage, and also are essential for establishing smoking-gun transport signatures of Majorana fermions in spinful Luttinger liquid junctions.Comment: 25 pages, 6 figures, v

    A near zero velocity dispersion stellar component in the Canes Venatici dwarf spheroidal galaxy

    Get PDF
    We present a spectroscopic survey of the newly-discovered Canes Venatici dwarf galaxy using the Keck/DEIMOS spectrograph. Two stellar populations of distinct kinematics are found to be present in this galaxy: an extended, metal-poor component, of half-light radius 7'.8(+2.4/-2.1), which has a velocity dispersion of 13.9(+3.2/-2.5) km/s, and a more concentrated (half-light radius 3'.6(+1.1/-0.8) metal-rich component of extremely low velocity dispersion. At 99% confidence, the upper limit to the central velocity dispersion of the metal-rich population is 1.9 km/s. This is the lowest velocity dispersion ever measured in a galaxy. We perform a Jeans analysis on the two components, and find that the dynamics of the structures can only be consistent if we adopt extreme (and unlikely) values for the scale length and velocity dispersion of the metal-poor population. With a larger radial velocity sample and improved measurements of the density profile of the two populations, we anticipate that it will be possible to place strong constraints on the central distribution of the dark matter in this galaxy.Comment: 5 pages, 7 figures, accepted by MNRA

    Asymmetric Fluid Criticality I: Scaling with Pressure Mixing

    Full text link
    The thermodynamic behavior of a fluid near a vapor-liquid and, hence, asymmetric critical point is discussed within a general ``complete'' scaling theory incorporating pressure mixing in the nonlinear scaling fields as well as corrections to scaling. This theory allows for a Yang-Yang anomaly in which \mu_{\sigma}^{\prime\prime}(T), the second temperature derivative of the chemical potential along the phase boundary, diverges like the specific heat when T\to T_{\scriptsize c}; it also generates a leading singular term, |t|^{2\beta}, in the coexistence curve diameter, where t\equiv (T-T_{\scriptsize c}) /T_{\scriptsize c}. The behavior of various special loci, such as the critical isochore, the critical isotherm, the k-inflection loci, on which \chi^{(k)}\equiv \chi(\rho,T)/\rho^{k} (with \chi = \rho^{2} k_{\scriptsize B}TK_{T}) and C_{V}^{(k)}\equiv C_{V}(\rho,T)/\rho^{k} are maximal at fixed T, is carefully elucidated. These results are useful for analyzing simulations and experiments, since particular, nonuniversal values of k specify loci that approach the critical density most rapidly and reflect the pressure-mixing coefficient. Concrete illustrations are presented for the hard-core square-well fluid and for the restricted primitive model electrolyte. For comparison, a discussion of the classical (or Landau) theory is presented briefly and various interesting loci are determined explicitly and illustrated quantitatively for a van der Waals fluid.Comment: 21 pages in two-column format including 8 figure

    On the speed of pulled fronts with a cutoff

    Full text link
    We study the effect of a small cutoff ϵ\epsilon on the velocity of a pulled front in one dimension by means of a variational principle. We obtain a lower bound on the speed dependent on the cutoff, and for which the two leading order terms correspond to the Brunet Derrida expression. To do so we cast a known variational principle for the speed of propagation of fronts in new variables which makes it more suitable for applications.Comment: 12 pages no figure

    Two site self consistent method for front propagation in reaction-diffusion system

    Full text link
    We study front propagation in the reaction diffusion process A↔2AA\leftrightarrow2A on one dimensional lattice with hard core interaction between the particles. We propose a two site self consistent method (TSSCM) to make analytic estimates for the front velocity and are in excellent agreement with the simulation results for all parameter regimes. We expect that the simplicity of the method will allow one to use this technique for estimating the front velocity in other reaction diffusion processes as well.Comment: 6 figure

    Coexistence Curve Singularities at Critical End Points

    Full text link
    We report an extensive Monte Carlo study of critical end point behaviour in a symmetrical binary fluid mixture. On the basis of general scaling arguments, singular behaviour is predicted in the diameter of the liquid-gas coexistence curve as the critical end point is approached. The simulation results show clear evidence for this singularity, as well as confirming a previously predicted singularity in the coexistence chemical potential. Both singularities should be detectable experimentally.Comment: 9 pages Revtex, 3 figures. To appear in Phys. Rev. Let

    Complete high-precision entropic sampling

    Full text link
    Monte Carlo simulations using entropic sampling to estimate the number of configurations of a given energy are a valuable alternative to traditional methods. We introduce {\it tomographic} entropic sampling, a scheme which uses multiple studies, starting from different regions of configuration space, to yield precise estimates of the number of configurations over the {\it full range} of energies, {\it without} dividing the latter into subsets or windows. Applied to the Ising model on the square lattice, the method yields the critical temperature to an accuracy of about 0.01%, and critical exponents to 1% or better. Predictions for systems sizes L=10 - 160, for the temperature of the specific heat maximum, and of the specific heat at the critical temperature, are in very close agreement with exact results. For the Ising model on the simple cubic lattice the critical temperature is given to within 0.003% of the best available estimate; the exponent ratios β/ν\beta/\nu and γ/ν\gamma/\nu are given to within about 0.4% and 1%, respectively, of the literature values. In both two and three dimensions, results for the {\it antiferromagnetic} critical point are fully consistent with those of the ferromagnetic transition. Application to the lattice gas with nearest-neighbor exclusion on the square lattice again yields the critical chemical potential and exponent ratios β/ν\beta/\nu and γ/ν\gamma/\nu to good precision.Comment: For a version with figures go to http://www.fisica.ufmg.br/~dickman/transfers/preprints/entsamp2.pd

    The Logarithmic Triviality of Compact QED Coupled to a Four Fermi Interaction

    Full text link
    This is the completion of an exploratory study of Compact lattice Quantum Electrodynamics with a weak four-fermi interaction and four species of massless fermions. In this formulation of Quantum Electrodynamics massless fermions can be simulated directly and Finite Size Scaling analyses can be performed at the theory's chiral symmetry breaking critical point. High statistics simulations on lattices ranging from 848^4 to 24424^4 yield the equation of state, critical indices, scaling functions and cumulants. The measurements are well fit with the orthodox hypothesis that the theory is logarithmically trivial and its continuum limit suffers from Landau's zero charge problem.Comment: 27 pages, 15 figues and 10 table
    • …
    corecore