508 research outputs found

    Crystal structure, incommensurate magnetic order and ferroelectricity in mn1x_{1-x}cux_{x}wo4{_4} (x=0-0.19)

    Get PDF
    We have carried out a systematic study on the effect of Cu doping on nuclear, magnetic, and dielectric properties in Mn1x_{1-x}Cux_{x}WO4_4 for 0x0.19{0}\leq{x}\leq{0.19} by a synergic use of different techniques, viz, heat capacity, magnetization, dielectric, and neutron powder diffraction measurements. Via heat capacity and magnetization measurements we show that with increasing Cu concentration magnetic frustration decreases, which leads to the stabilization of commensurate magnetic ordering. This was further verified by temperature-dependent unit cell volume changes derived from neutron diffraction measurements which was modeled by the Gr\"{u}neisen approximation. Dielectric measurements show a low temperature phase transition below about 9-10 K. Further more, magnetic refinements reveal no changes below this transition indicating a possible spin-flop transition which is unique to the Cu doped system. From these combined studies we have constructed a magnetoelectric phase diagram of this compound.Comment: 9 pages, 9 figures, accepted for publication in PR

    Study of one-dimensional nature of (Sr,Ba)_2Cu(PO_4)_2 and BaCuP_2O_7 via 31P NMR

    Full text link
    The magnetic behavior of the low-dimensional phosphates (Sr,Ba)_2 Cu(PO_4)_2 and BaCuP_2O_7 was investigated by means of magnetic susceptibility and ^{31}P nuclear magnetic resonance (NMR) measurements. We present here the NMR shift K(T), the spin-lattice 1/T_1 and spin-spin 1/T_2 relaxation-rate data over a wide temperature range 0.02 K < T < 300 K. The T-dependence of the NMR K(T) is well described by the S=1/2 Heisenberg antiferromagnetic chain model with an intrachain exchange of J/k_B = 165 K, 151 K, and 108 K in Sr_2Cu(PO_4)_2, Ba_2Cu(PO_4)_2, and BaCuP_2O_7, respectively. Our measurements suggest the presence of magnetic ordering at 0.8 K in BaCuP_2O_7 (J/k_B = 108 K). For all the samples, we find that 1/T_1 is nearly T-independent at low-temperatures (1 K < T < 10 K), which is theoretically expected for 1D chains when relaxation is dominated by fluctuations of the staggered susceptibility. At high temperatures, 1/T_1 varies nearly linearly with temperature

    Evolution of magnetic states in frustrated diamond lattice antiferromagnetic Co(Al1-xCox)2O4 spinels

    Get PDF
    Using neutron powder diffraction and Monte-Carlo simulations we show that a spin-liquid regime emerges at $all compositions in the diamond-lattice antiferromagnets Co(Al1-xCox)2O4. This spin-liquid regime induced by frustration due to the second-neighbour exchange coupling J2, is gradually superseded by antiferromagnetic collinear long-range order (k=0) at low temperatures. Upon substitution of Al3+ by Co3+ in the octahedral B-site the temperature range occupied by the spin-liquid regime narrows and TN increases. To explain the experimental observations we considered magnetic anisotropy D or third-neighbour exchange coupling J3 as degeneracy-breaking perturbations. We conclude that Co(Al1-xCox)2O4 is below the theoretical critical point J2/J1=1/8, and that magnetic anisotropy assists in selecting a collinear long-range ordered ground state, which becomes more stable with increasing x due to a higher efficiency of O-Co3+-O as an interaction path compared to O-Al3+-O

    Spinon Confinement in the One-Dimensional Ising-Like Antiferromagnet SrCo2V2O8

    Get PDF
    For quasi-one dimensional quantum spin systems theory predicts the occurrence of a confinement of spinon excitation due to interchain couplings. Here we investigate the system SrCo2V2O8, a realization of the weakly-coupled Ising-like XXZ antiferromagnetic chains, by terahertz spectroscopy with and without applied magnetic field. At low temperatures a series of excitations is observed, which split in a Zeeman-like fashion in an applied magnetic field. These magnetic excitations are identified as the theoretically predicted spinon-pair excitations. Using a one dimensional Schr\"odinger equation with a linear confinement potential imposed by weak interchain couplings, the hierarchy of the confined spinons can be fully described.Comment: 4 pages, 3 figure

    Dielectric behavior of Copper Tantalum Oxide

    Full text link
    A thorough investigation of the dielectric properties of Cu2Ta4O12, a material crystallizing in a pseudo-cubic, perovskite-derived structure is presented. We measured the dielectric constant and conductivity of single crystals in an exceptionally broad frequency range up to GHz frequencies and at temperatures from 25 - 500 K. The detected dielectric constant is unusually high (reaching values up to 105) and almost constant in a broad frequency and temperature range. Cu2Ta4O12 possesses a crystal structure similar to CaCu3Ti4O12, the compound for which such an unusually high dielectric constant was first observed. An analysis of the results using a simple equivalent circuit and measurements with different types of contact revealed that extrinsic interfacial polarization effects, derived from surface barrier capacitors are the origin of the observed giant dielectric constants. The intrinsic properties of Cu2Ta4O12 are characterized by a (still relatively high) dielectric constant in the order of 100 and by charge transport via hopping conduction of Anderson-localized charge carriers.Comment: 18 pages, 6 figures, submitted to Jouranl of Physical Chemestr

    31P NMR study of Na2CuP2O7: a S=1/2 two-dimensional Heisenberg antiferromagnetic system

    Full text link
    The magnetic properties of Na2CuP2O7 were investigated by means of 31P nuclear magnetic resonance (NMR), magnetic susceptibility, and heat capacity measurements. We report the 31P NMR shift, the spin-lattice 1/T1, and spin-spin 1/T2 relaxation-rate data as a function of temperature T. The temperature dependence of the NMR shift K(T) is well described by the S=1/2 square lattice Heisenberg antiferromagnetic (HAF) model with an intraplanar exchange of J/k_B \simeq 18\pm2 K and a hyperfine coupling A = (3533\pm185) Oe/mu_B. The 31P NMR spectrum was found to broaden abruptly below T \sim 10 K signifying some kind of transition. However, no anomaly was noticed in the bulk susceptibility data down to 1.8 K. The heat capacity appears to have a weak maximum around 10 K. With decrease in temperatures, the spin-lattice relaxation rate 1/T1 decreases monotonically and appears to agree well with the high temperature series expansion expression for a S = 1/2 2D square lattice.Comment: 12 pages, 8 figures, submitted to J. Phys.: Cond. Ma

    Field-controlled phase separation at the impurity-induced magnetic ordering in the spin-Peierls magnet CuGeO3

    Full text link
    The fraction of the paramagnetic phase surviving at the impurity-induced antiferromagnetic order transition of the doped spin-Peierls magnet Cu(1-x)Mg(x)GeO3 (x < 5%) is found to increase with an external magnetic field. This effect is qualitatively explained by the competition of Zeeman energy and exchange interaction between local antiferromagnetic clustersComment: 4 pages 4 figure

    Magnetic fluctuations and superconductivity in Fe pnictides probed by electron spin resonance

    Full text link
    The electron spin resonance absorption spectrum of Eu^{2+} ions serves as a probe of the normal and superconducting state in Eu_{0.5}K_{0.5}Fe_2As_2. The spin-lattice relaxation rate 1/T_1^{\rm ESR} obtained from the ESR linewidth exhibits a Korringa-like linear increase with temperature above T_C evidencing a normal Fermi-liquid behavior. Below 45 K deviations from the Korringa-law occur which are ascribed to enhanced magnetic fluctuations within the FeAs layers upon approaching the superconducting transition. Below T_C the spin-lattice relaxation rate 1/T_1^{\rm ESR} follows a T^{1.5}-behavior without the appearance of a coherence peak.Comment: 5 pages, 5 figure

    Spin-driven Phase Transitions in ZnCr2_2Se4_4 and ZnCr2_2S4_4 Probed by High Resolution Synchrotron X-ray and Neutron Powder Diffraction

    Full text link
    The crystal and magnetic structures of the spinel compounds ZnCr2_2S4_4 and ZnCr2_2Se4_4 were investigated by high resolution powder synchrotron and neutron diffraction. ZnCr2_2Se4_4 exhibits a first order phase transition at TN=21T_N=21 K into an incommensurate helical magnetic structure. Magnetic fluctuations above TNT_N are coupled to the crystal lattice as manifested by negative thermal expansion. Both, the complex magnetic structure and the anomalous structural behavior can be related to magnetic frustration. Application of an external magnetic field shifts the ordering temperature and the regime of negative thermal expansion towards lower temperatures. Thereby, the spin ordering changes into a conical structure. ZnCr2_2S4_4 shows two magnetic transitions at TN1=15T_{N1}=15 K and TN2=8T_{N2}=8 K that are accompanied by structural phase transitions. The crystal structure transforms from the cubic spinel-type (space group FdFd\={3}mm) at high temperatures in the paramagnetic state, via a tetragonally distorted intermediate phase (space group I41I4_1 / amdamd) for TN2<T<TN1T_{N2} < T < T_{N1} into a low temperature orthorhombic phase (space group ImmaI m m a) for T<TN2T < T_{N2}. The cooperative displacement of sulfur ions by exchange striction is the origin of these structural phase transitions. The low temperature structure of ZnCr2_2S4_4 is identical to the orthorhombic structure of magnetite below the Verwey transition. When applying a magnetic field of 5 T the system shows an induced negative thermal expansion in the intermediate magnetic phase as observed in ZnCr2_2Se4_4.Comment: 11 pages, 13 figures, to be published in PR
    corecore