75 research outputs found

    Methanobactin and the Link Between Copper and Bacterial Methane Oxidation

    Get PDF
    Methanobactins (mbs) are low-molecular-mass (<1,200 Da) copper-binding peptides, or chalkophores, produced by many methane-oxidizing bacteria (methanotrophs). These molecules exhibit similarities to certain iron-binding siderophores but are expressed and secreted in response to copper limitation. Structurally, mbs are characterized by a pair of heterocyclic rings with associated thioamide groups that form the copper coordination site. One of the rings is always an oxazolone and the second ring an oxazolone, an imidazolone, or a pyrazinedione moiety. The mb molecule originates from a peptide precursor that undergoes a series of posttranslational modifications, including (i) ring formation, (ii) cleavage of a leader peptide sequence, and (iii) in some cases, addition of a sulfate group. Functionally, mbs represent the extracellular component of a copper acquisition system. Consistent with this role in copper acquisition, mbs have a high affinity for copper ions. Following binding, mbs rapidly reduce Cu2+ to Cu1+. In addition to binding copper, mbs will bind most transition metals and near-transition metals and protect the host methanotroph as well as other bacteria from toxic metals. Several other physiological functions have been assigned to mbs, based primarily on their redox and metal-binding properties. In this review, we examine the current state of knowledge of this novel type of metal-binding peptide. We also explore its potential applications, how mbs may alter the bioavailability of multiple metals, and the many roles mbs may play in the physiology of methanotrophs

    Search for the chiral magnetic effect via charge-dependent azimuthal correlations relative to spectator and participant planes in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    The chiral magnetic effect (CME) refers to charge separation along a strong magnetic field due to imbalanced chirality of quarks in local parity and charge-parity violating domains in quantum chromodynamics. The experimental measurement of the charge separation is made difficult by the presence of a major background from elliptic azimuthal anisotropy. This background and the CME signal have different sensitivities to the spectator and participant planes, and could thus be determined by measurements with respect to these planes. We report such measurements in Au+Au collisions at a nucleon-nucleon center-of-mass energy of 200 GeV at the Relativistic Heavy-Ion Collider. It is found that the charge separation, with the flow background removed, is consistent with zero in peripheral (large impact parameter) collisions. Some indication of finite CME signals is seen with a significance of 1--3 standard deviations in mid-central (intermediate impact parameter) collisions. Significant residual background effects may, however, still be present.Comment: 8 pages, 3 figure

    Tomography of Ultra-relativistic Nuclei with Polarized Photon-gluon Collisions

    Full text link
    A linearly polarized photon can be quantized from the Lorentz-boosted electromagnetic field of a nucleus traveling at ultra-relativistic speed. When two relativistic heavy nuclei pass one another at a distance of a few nuclear radii, the photon from one nucleus may interact through a virtual quark-antiquark pair with gluons from the other nucleus forming a short-lived vector meson (e.g. ρ0{\rho^0}). In this experiment, the polarization was utilized in diffractive photoproduction to observe a unique spin interference pattern in the angular distribution of ρ0π+π{\rho^0\rightarrow\pi^+\pi^-} decays. The observed interference is a result of an overlap of two wave functions at a distance an order of magnitude larger than the ρ0{\rho^0} travel distance within its lifetime. The strong-interaction nuclear radii were extracted from these diffractive interactions, and found to be 6.53±0.066.53\pm 0.06 fm (197Au^{197} {\rm Au }) and 7.29±0.087.29\pm 0.08 fm (238U^{238} {\rm U}), larger than the nuclear charge radii. The observable is demonstrated to be sensitive to the nuclear geometry and quantum interference of non-identical particles

    Observation of Global Spin Alignment of ϕ\phi and K0K^{*0} Vector Mesons in Nuclear Collisions

    Full text link
    The strong force, as one of the four fundamental forces at work in the universe, governs interactions of quarks and gluons, and binds together the atomic nucleus. Notwithstanding decades of progress since Yukawa first developed a description of the force between nucleons in terms of meson exchange, a full understanding of the strong interaction remains a major challenge in modern science. One remaining difficulty arises from the non-perturbative nature of the strong force, which leads to the phenomenon of quark confinement at distance scales on the order of the size of the proton. Here we show that in relativistic heavy-ion collisions, where quarks and gluons are set free over an extended volume, two species of produced vector (spin-1) mesons, namely ϕ\phi and K0K^{*0}, emerge with a surprising pattern of global spin alignment. In particular, the global spin alignment for ϕ\phi is unexpectedly large, while that for K0K^{*0} is consistent with zero. The observed spin-alignment pattern and magnitude for the ϕ\phi cannot be explained by conventional mechanisms, while a model with strong force fields accommodates the current data. This is the first time that the strong force field is experimentally supported as a key mechanism that leads to global spin alignment. We extract a quantity proportional to the intensity of the field of the strong force. Within the framework of the Standard Model, where the strong force is typically described in the quark and gluon language of Quantum Chromodynamics, the field being considered here is an effective proxy description. This is a qualitatively new class of measurement, which opens a new avenue for studying the behaviour of strong force fields via their imprint on spin alignment

    Measurement of Λ4H\rm ^4_{\Lambda}H and Λ4He\rm ^4_{\Lambda}He binding energy in Au+Au collisions at sNN\sqrt{s_\mathrm{NN}} = 3 GeV

    Full text link
    Measurements of mass and Λ\Lambda binding energy of Λ4H\rm ^4_{\Lambda}H and Λ4He\rm ^4_{\Lambda}He in Au+Au collisions at sNN=3\sqrt{s_{_{\rm NN}}}=3 GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The Λ\Lambda binding energies are measured to be 2.22±0.06(stat.)±0.14(syst.)\rm 2.22\pm0.06(stat.) \pm0.14(syst.) MeV and 2.38±0.13(stat.)±0.12(syst.)\rm 2.38\pm0.13(stat.) \pm0.12(syst.) MeV for Λ4H\rm ^4_{\Lambda}H and Λ4He\rm ^4_{\Lambda}He, respectively. The measured Λ\Lambda binding-energy difference is 0.16±0.14(stat.)±0.10(syst.)\rm 0.16\pm0.14(stat.)\pm0.10(syst.) MeV for ground states. Combined with the γ\gamma-ray transition energies, the binding-energy difference for excited states is 0.16±0.14(stat.)±0.10(syst.)\rm -0.16\pm0.14(stat.)\pm0.10(syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ\Lambda binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in ΔBΛ4(1exc+)ΔBΛ4(0g.s.+)<0\rm \Delta B_{\Lambda}^4(1_{exc}^{+})\approx -\Delta B_{\Lambda}^4(0_{g.s.}^{+})<0 and present a new method for the study of CSB effect using relativistic heavy-ion collisions.Comment: 8 pages, 5 figure

    Event-by-event correlations between Λ\Lambda (Λˉ\bar{\Lambda}) hyperon global polarization and handedness with charged hadron azimuthal separation in Au+Au collisions at sNN=27 GeV\sqrt{s_{\text{NN}}} = 27 \text{ GeV} from STAR

    Full text link
    Global polarizations (PP) of Λ\Lambda (Λˉ\bar{\Lambda}) hyperons have been observed in non-central heavy-ion collisions. The strong magnetic field primarily created by the spectator protons in such collisions would split the Λ\Lambda and Λˉ\bar{\Lambda} global polarizations (ΔP=PΛPΛˉ<0\Delta P = P_{\Lambda} - P_{\bar{\Lambda}} < 0). Additionally, quantum chromodynamics (QCD) predicts topological charge fluctuations in vacuum, resulting in a chirality imbalance or parity violation in a local domain. This would give rise to an imbalance (Δn=NLNRNL+NR0\Delta n = \frac{N_{\text{L}} - N_{\text{R}}}{\langle N_{\text{L}} + N_{\text{R}} \rangle} \neq 0) between left- and right-handed Λ\Lambda (Λˉ\bar{\Lambda}) as well as a charge separation along the magnetic field, referred to as the chiral magnetic effect (CME). This charge separation can be characterized by the parity-even azimuthal correlator (Δγ\Delta\gamma) and parity-odd azimuthal harmonic observable (Δa1\Delta a_{1}). Measurements of ΔP\Delta P, Δγ\Delta\gamma, and Δa1\Delta a_{1} have not led to definitive conclusions concerning the CME or the magnetic field, and Δn\Delta n has not been measured previously. Correlations among these observables may reveal new insights. This paper reports measurements of correlation between Δn\Delta n and Δa1\Delta a_{1}, which is sensitive to chirality fluctuations, and correlation between ΔP\Delta P and Δγ\Delta\gamma sensitive to magnetic field in Au+Au collisions at 27 GeV. For both measurements, no correlations have been observed beyond statistical fluctuations.Comment: 10 pages, 10 figures; paper from the STAR Collaboratio

    Hyperon polarization along the beam direction relative to the second and third harmonic event planes in isobar collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    The polarization of Λ\Lambda and Λˉ\bar{\Lambda} hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at sNN\sqrt{s_{NN}} = 200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild pTp_T dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagree with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and pTp_T dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.Comment: 6 pages, 5 figures, Published in Physical Review Letter

    Measurement of electrons from open heavy-flavor hadron decays in Au+Au collisions at sNN=200\sqrt{s_{\rm NN}}=200 GeV with the STAR detector

    Full text link
    We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity (y<|y|< 0.7) in Au+Au collisions at sNN=200\sqrt{s_{\rm NN}}=200 GeV. Invariant yields of HFEs are measured for the transverse momentum range of 3.5<pT<93.5 < p_{\rm T} < 9 GeV/cc in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in pp+pp collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma
    corecore