75 research outputs found
Methanobactin and the Link Between Copper and Bacterial Methane Oxidation
Methanobactins (mbs) are low-molecular-mass (<1,200 Da) copper-binding peptides, or chalkophores, produced by many methane-oxidizing bacteria (methanotrophs). These molecules exhibit similarities to certain iron-binding siderophores but are expressed and secreted in response to copper limitation. Structurally, mbs are characterized by a pair of heterocyclic rings with associated thioamide groups that form the copper coordination site. One of the rings is always an oxazolone and the second ring an oxazolone, an imidazolone, or a pyrazinedione moiety. The mb molecule originates from a peptide precursor that undergoes a series of posttranslational modifications, including (i) ring formation, (ii) cleavage of a leader peptide sequence, and (iii) in some cases, addition of a sulfate group. Functionally, mbs represent the extracellular component of a copper acquisition system. Consistent with this role in copper acquisition, mbs have a high affinity for copper ions. Following binding, mbs rapidly reduce Cu2+ to Cu1+. In addition to binding copper, mbs will bind most transition metals and near-transition metals and protect the host methanotroph as well as other bacteria from toxic metals. Several other physiological functions have been assigned to mbs, based primarily on their redox and metal-binding properties. In this review, we examine the current state of knowledge of this novel type of metal-binding peptide. We also explore its potential applications, how mbs may alter the bioavailability of multiple metals, and the many roles mbs may play in the physiology of methanotrophs
Search for the chiral magnetic effect via charge-dependent azimuthal correlations relative to spectator and participant planes in Au+Au collisions at = 200 GeV
The chiral magnetic effect (CME) refers to charge separation along a strong
magnetic field due to imbalanced chirality of quarks in local parity and
charge-parity violating domains in quantum chromodynamics. The experimental
measurement of the charge separation is made difficult by the presence of a
major background from elliptic azimuthal anisotropy. This background and the
CME signal have different sensitivities to the spectator and participant
planes, and could thus be determined by measurements with respect to these
planes. We report such measurements in Au+Au collisions at a nucleon-nucleon
center-of-mass energy of 200 GeV at the Relativistic Heavy-Ion Collider. It is
found that the charge separation, with the flow background removed, is
consistent with zero in peripheral (large impact parameter) collisions. Some
indication of finite CME signals is seen with a significance of 1--3 standard
deviations in mid-central (intermediate impact parameter) collisions.
Significant residual background effects may, however, still be present.Comment: 8 pages, 3 figure
Tomography of Ultra-relativistic Nuclei with Polarized Photon-gluon Collisions
A linearly polarized photon can be quantized from the Lorentz-boosted
electromagnetic field of a nucleus traveling at ultra-relativistic speed. When
two relativistic heavy nuclei pass one another at a distance of a few nuclear
radii, the photon from one nucleus may interact through a virtual
quark-antiquark pair with gluons from the other nucleus forming a short-lived
vector meson (e.g. ). In this experiment, the polarization was
utilized in diffractive photoproduction to observe a unique spin interference
pattern in the angular distribution of decays.
The observed interference is a result of an overlap of two wave functions at a
distance an order of magnitude larger than the travel distance
within its lifetime. The strong-interaction nuclear radii were extracted from
these diffractive interactions, and found to be fm () and fm (), larger than the nuclear charge
radii. The observable is demonstrated to be sensitive to the nuclear geometry
and quantum interference of non-identical particles
Observation of Global Spin Alignment of and Vector Mesons in Nuclear Collisions
The strong force, as one of the four fundamental forces at work in the
universe, governs interactions of quarks and gluons, and binds together the
atomic nucleus. Notwithstanding decades of progress since Yukawa first
developed a description of the force between nucleons in terms of meson
exchange, a full understanding of the strong interaction remains a major
challenge in modern science. One remaining difficulty arises from the
non-perturbative nature of the strong force, which leads to the phenomenon of
quark confinement at distance scales on the order of the size of the proton.
Here we show that in relativistic heavy-ion collisions, where quarks and gluons
are set free over an extended volume, two species of produced vector (spin-1)
mesons, namely and , emerge with a surprising pattern of global
spin alignment. In particular, the global spin alignment for is
unexpectedly large, while that for is consistent with zero. The
observed spin-alignment pattern and magnitude for the cannot be
explained by conventional mechanisms, while a model with strong force fields
accommodates the current data. This is the first time that the strong force
field is experimentally supported as a key mechanism that leads to global spin
alignment. We extract a quantity proportional to the intensity of the field of
the strong force. Within the framework of the Standard Model, where the strong
force is typically described in the quark and gluon language of Quantum
Chromodynamics, the field being considered here is an effective proxy
description. This is a qualitatively new class of measurement, which opens a
new avenue for studying the behaviour of strong force fields via their imprint
on spin alignment
Measurement of and binding energy in Au+Au collisions at = 3 GeV
Measurements of mass and binding energy of and
in Au+Au collisions at GeV are
presented, with an aim to address the charge symmetry breaking (CSB) problem in
hypernuclei systems with atomic number A = 4. The binding energies
are measured to be MeV and MeV for and , respectively. The measured binding-energy difference
is MeV for ground states. Combined with
the -ray transition energies, the binding-energy difference for excited
states is MeV, which is negative and
comparable to the value of the ground states within uncertainties. These new
measurements on the binding-energy difference in A = 4 hypernuclei
systems are consistent with the theoretical calculations that result in
and present a new method for the study of CSB effect using relativistic
heavy-ion collisions.Comment: 8 pages, 5 figure
Event-by-event correlations between () hyperon global polarization and handedness with charged hadron azimuthal separation in Au+Au collisions at from STAR
Global polarizations () of () hyperons have been
observed in non-central heavy-ion collisions. The strong magnetic field
primarily created by the spectator protons in such collisions would split the
and global polarizations (). Additionally, quantum chromodynamics (QCD) predicts
topological charge fluctuations in vacuum, resulting in a chirality imbalance
or parity violation in a local domain. This would give rise to an imbalance
() between left- and right-handed
() as well as a charge separation along the magnetic field,
referred to as the chiral magnetic effect (CME). This charge separation can be
characterized by the parity-even azimuthal correlator () and
parity-odd azimuthal harmonic observable (). Measurements of
, , and have not led to definitive
conclusions concerning the CME or the magnetic field, and has not
been measured previously. Correlations among these observables may reveal new
insights. This paper reports measurements of correlation between and
, which is sensitive to chirality fluctuations, and correlation
between and sensitive to magnetic field in Au+Au
collisions at 27 GeV. For both measurements, no correlations have been observed
beyond statistical fluctuations.Comment: 10 pages, 10 figures; paper from the STAR Collaboratio
Hyperon polarization along the beam direction relative to the second and third harmonic event planes in isobar collisions at = 200 GeV
The polarization of and hyperons along the beam
direction has been measured relative to the second and third harmonic event
planes in isobar Ru+Ru and Zr+Zr collisions at = 200 GeV. This
is the first experimental evidence of the hyperon polarization by the
triangular flow originating from the initial density fluctuations. The
amplitudes of the sine modulation for the second and third harmonic results are
comparable in magnitude, increase from central to peripheral collisions, and
show a mild dependence. The azimuthal angle dependence of the
polarization follows the vorticity pattern expected due to elliptic and
triangular anisotropic flow, and qualitatively disagree with most hydrodynamic
model calculations based on thermal vorticity and shear induced contributions.
The model results based on one of existing implementations of the shear
contribution lead to a correct azimuthal angle dependence, but predict
centrality and dependence that still disagree with experimental
measurements. Thus, our results provide stringent constraints on the thermal
vorticity and shear-induced contributions to hyperon polarization. Comparison
to previous measurements at RHIC and the LHC for the second-order harmonic
results shows little dependence on the collision system size and collision
energy.Comment: 6 pages, 5 figures, Published in Physical Review Letter
Measurement of electrons from open heavy-flavor hadron decays in Au+Au collisions at GeV with the STAR detector
We report a new measurement of the production of electrons from open
heavy-flavor hadron decays (HFEs) at mid-rapidity ( 0.7) in Au+Au
collisions at GeV. Invariant yields of HFEs are
measured for the transverse momentum range of GeV/ in
various configurations of the collision geometry. The HFE yields in head-on
Au+Au collisions are suppressed by approximately a factor of 2 compared to that
in + collisions scaled by the average number of binary collisions,
indicating strong interactions between heavy quarks and the hot and dense
medium created in heavy-ion collisions. Comparison of these results with models
provides additional tests of theoretical calculations of heavy quark energy
loss in the quark-gluon plasma
- …