2,680 research outputs found

    Thermo-mechanical behaviour of a compacted swelling clay

    Get PDF
    Compacted unsaturated swelling clay is often considered as a possible buffer material for deep nuclear waste disposal. An isotropic cell permitting simultaneous control of suction, temperature and pressure was used to study the thermo-mechanical behaviour of this clay. Tests were performed at total suctions ranging from 9 to 110 MPa, temperature from 25 to 80 degrees C, isotropic pressure from 0.1 to 60 MPa. It was observed that heating at constant suction and pressure induces either swelling or contraction. The results from compression tests at constant suction and temperature evidenced that at lower suction, the yield pressure was lower, the elastic compressibility parameter and the plastic compressibility parameter were higher. On the other hand, at a similar suction, the yield pressure was slightly influenced by the temperature; and the compressibility parameters were insensitive to temperature changes. The thermal hardening phenomenon was equally evidenced by following a thermo-mechanical path of loading-heating-cooling-reloading

    Optical study of the electronic phase transition of strongly correlated YbInCu_4

    Full text link
    Infrared, visible and near-UV reflectivity measurements are used to obtain conductivity as a function of temperature and frequency in YbInCu_4, which exhibits an isostructural phase-transition into a mixed-valent phase below T_v=42 K. In addition to a gradual loss of spectral weight with decreasing temperature extending up to 1.5 eV, a sharp resonance appears at 0.25 eV in the mixed-valent phase. This feature can be described in terms of excitations into the Kondo (Abrikosov-Suhl) resonance, and, like the sudden reduction of resistivity, provides a direct reflection of the onset of coherence in this strongly correlated electron system.Comment: 4 pages, 3 figures (to appear in Phys. Rev. B

    The Effective Field Theory of Multifield Inflation

    Get PDF
    We generalize the Effective Field Theory of Inflation to include additional light scalar degrees of freedom that are in their vacuum at the time the modes of interest are crossing the horizon. In order to make the scalars light in a natural way we consider the case where they are the Goldstone bosons of a global symmetry group or are partially protected by an approximate supersymmetry. We write the most general Lagrangian that couples the scalar mode associated to the breaking of time translation during inflation to the additional light scalar fields. This Lagrangian is constrained by diffeomorphism invariance and the additional symmetries that keep the new scalars light. This Lagrangian describes the fluctuations around the time of horizon crossing and it is supplemented with a general parameterization describing how the additional fluctuating fields can affect cosmological perturbations. We find that multifield inflation can reproduce the non-Gaussianities that can be generated in single field inflation but can also give rise to new kinds of non-Gaussianities. We find several new three-point function shapes. We show that in multifield inflation it is possible to naturally suppress the three-point function making the four-point function the leading source of detectable non-Gaussianities. We find that under certain circumstances, i.e. if specific shapes of non-Gaussianities are detected in the data, one could distinguish between single and multifield inflation and sometimes even among the various mechanisms that kept the additional fields light.Comment: 62 pages, 1 figure; v2: JHEP published version, minor corrections, comments and references adde

    Non-Gaussianity from Inflation

    Get PDF
    Correlated adiabatic and isocurvature perturbation modes are produced during inflation through an oscillation mechanism when extra scalar degrees of freedom other than the inflaton field are present. We show that this correlation generically leads to sizeable non-Gaussian features both in the adiabatic and isocurvature perturbations. The non-Gaussianity is first generated by large non-linearities in some scalar sector and then efficiently transferred to the inflaton sector by the oscillation process. We compute the cosmic microwave background angular bispectrum, providing a characteristic feature of such inflationary non-Gaussianity,which might be detected by upcoming satellite experiments.Comment: Revised version accepted for publication in Phys. Rev. D. 19 pages, LaTeX fil

    Competition Between Antiferromagnetic Order and Spin-Liquid Behavior in the Two-Dimensional Periodic Anderson Model at Half-Filling

    Full text link
    We study the two-dimensional periodic Anderson model at half-filling using quantum Monte Carlo (QMC) techniques. The ground state undergoes a magnetic order-disorder transition as a function of the effective exchange coupling between the conduction and localized bands. Low-lying spin and charge excitations are determined using the maximum entropy method to analytically continue the QMC data. At finite temperature we find a competition between the Kondo effect and antiferromagnetic order which develops in the localized band through Ruderman-Kittel-Kasuya-Yosida interactions.Comment: Revtex 3.0, 10 pages + 5 figures, UCSBTH-94-2

    The dynamical viability of scalar-tensor gravity theories

    Full text link
    We establish the dynamical attractor behavior in scalar-tensor theories of dark energy, providing a powerful framework to analyze classes of theories, predicting common evolutionary characteristics that can be compared against cosmological constraints. In the Jordan frame the theories are viewed as a coupling between a scalar field, \Phi, and the Ricci scalar, R, F(\Phi)R. The Jordan frame evolution is described in terms of dynamical variables m \equiv d\ln F/d\ln \Phi and r \equiv -\Phi F/f, where F(\Phi) = d f(\Phi)/d\Phi. The evolution can be alternatively viewed in the Einstein frame as a general coupling between scalar dark energy and matter, \beta. We present a complete, consistent picture of evolution in the Einstein and Jordan frames and consider the conditions on the form of the coupling F and \beta required to give the observed cold dark matter (CDM) dominated era that transitions into a late time accelerative phase, including transitory accelerative eras that have not previously been investigated. We find five classes of evolutionary behavior of which four are qualitatively similar to those for f(R) theories (which have \beta=1/2). The fifth class exists only for |\beta| < \sqrt{3}/4, i.e. not for f(R) theories. In models giving transitory late time acceleration, we find a viable accelerative region of the (r,m) plane accessible to scalar-tensor theories with any coupling, \beta (at least in the range |\beta| \leq 1/2, which we study in detail), and an additional region open only to theories with |\beta| < \sqrt{3}/4.Comment: 24 pages, 3 figure
    • …
    corecore