3,647 research outputs found

    PO and PN in the wind of the oxygen-rich AGB star IK Tau

    Full text link
    Phosphorus-bearing compounds have only been studied in the circumstellar environments (CSEs) of the asymptotic giant branch (AGB) star IRC +10216 and the protoplanetary nebula CRL 2688, both C-rich objects, and the O-rich red supergiant VY CMa. The current chemical models cannot reproduce the high abundances of PO and PN derived from observations of VY CMa. No observations have been reported of phosphorus in the CSEs of O-rich AGB stars. We aim to set observational constraints on the phosphorous chemistry in the CSEs of O-rich AGB stars, by focussing on the Mira-type variable star IK Tau. Using the IRAM 30m telescope and the Submillimeter Array (SMA), we observed four rotational transitions of PN (J=2-1,3-2,6-5,7-6) and four of PO (J=5/2-3/2,7/2-5/2,13/2-11/2,15/2-13/2). The IRAM 30m observations were dedicated line observations, while the SMA data come from an unbiased spectral survey in the frequency range 279-355 GHz. We present the first detections of PN and PO in an O-rich AGB star and estimate abundances X(PN/H2) of about 3x10^-7 and X(PO/H2) in the range 0.5-6.0x10^-7. This is several orders of magnitude higher than what is found for the C-rich AGB star IRC +10216. The diameter (<=0.7") of the PN and PO emission distributions measured in the interferometric data corresponds to a maximum radial extent of about 40 stellar radii. The abundances and the spatial occurrence of the molecules are in very good agreement with the results reported for VY CMa. We did not detect PS or PH3 in the survey. We suggest that PN and PO are the main carriers of phosphorus in the gas phase, with abundances possibly up to several 10^-7. The current chemical models cannot account for this, underlining the strong need for updated chemical models that include phosphorous compounds.Comment: Accepted for publication in Astronomy & Astrophysics, 10 pages, 8 figure

    Thermodynamics of lattice QCD with two light quark flavours on a 16^3 x 8 lattice II

    Get PDF
    We have extended our earlier simulations of the high temperature behaviour of lattice QCD with two light flavours of staggered quarks on a 163×816^3 \times 8 lattice to lower quark mass (m_q=0.00625). The transition from hadronic matter to a quark-gluon plasma is observed at 6/g2=5.49(2)6/g^2=5.49(2) corresponding to a temperature of Tc≈140T_c \approx 140MeV. We present measurements of observables which probe the nature of the quark-gluon plasma and serve to distinguish it from hadronic matter. Although the transition is quite abrupt, we have seen no indications that it is first order.Comment: 23 pages, RevteX, 6 encapsulated postscript figure

    Quarkonium mass splittings in three-flavor lattice QCD

    Full text link
    We report on calculations of the charmonium and bottomonium spectrum in lattice QCD. We use ensembles of gauge fields with three flavors of sea quarks, simulated with the asqtad improved action for staggered fermions. For the heavy quarks we employ the Fermilab interpretation of the clover action for Wilson fermions. These calculations provide a test of lattice QCD, including the theory of discretization errors for heavy quarks. We provide, therefore, a careful discussion of the results in light of the heavy-quark effective Lagrangian. By and large, we find that the computed results are in agreement with experiment, once parametric and discretization errors are taken into account.Comment: 21 pages, 17 figure

    Pure rotational spectra of TiO and TiO_2 in VY Canis Majoris

    Full text link
    We report the first detection of pure rotational transitions of TiO and TiO_2 at (sub-)millimeter wavelengths towards the red supergiant VY CMa. A rotational temperature, T_rot, of about 250 K was derived for TiO_2. Although T_rot was not well constrained for TiO, it is likely somewhat higher than that of TiO_2. The detection of the Ti oxides confirms that they are formed in the circumstellar envelopes of cool oxygen-rich stars and may be the "seeds" of inorganic-dust formation, but alternative explanations for our observation of TiO and TiO_2 in the cooler regions of the envelope cannot be ruled out at this time. The observations suggest that a significant fraction of the oxides is not converted to dust, but instead remains in the gas phase throughout the outflow.Comment: to appear in Astronomy and Astrophysic

    Multiconfigurational Hartree-Fock theory for identical bosons in a double well

    Full text link
    Multiconfigurational Hartree-Fock theory is presented and implemented in an investigation of the fragmentation of a Bose-Einstein condensate made of identical bosonic atoms in a double well potential at zero temperature. The approach builds in the effects of the condensate mean field and of atomic correlations by describing generalized many-body states that are composed of multiple configurations which incorporate atomic interactions. Nonlinear and linear optimization is utilized in conjunction with the variational and Hylleraas-Undheim theorems to find the optimal ground and excited states of the interacting system. The resulting energy spectrum and associated eigenstates are presented as a function of double well barrier height. Delocalized and localized single configurational states are found in the extreme limits of the simple and fragmented condensate ground states, while multiconfigurational states and macroscopic quantum superposition states are revealed throughout the full extent of barrier heights. Comparison is made to existing theories that either neglect mean field or correlation effects and it is found that contributions from both interactions are essential in order to obtain a robust microscopic understanding of the condensate's atomic structure throughout the fragmentation process.Comment: 21 pages, 13 figure

    Preliminary heavy-light decay constants from the MILC collaboration

    Get PDF
    Preliminary results from the MILC collaboration for fBf_B, fBsf_{B_s}, fDf_D, fDsf_{D_s} and their ratios are presented. We compute in the quenched approximation at β=6.3\beta=6.3, 6.0 and 5.7 with Wilson light quarks and static and Wilson heavy quarks. We attempt to quantify systematic errors due to finite volume, finite lattice spacing, large amam, and fitting and extrapolation uncertainties. The hopping parameter approach of Henty and Kenway is used to treat the heavy quarks; the sources are Coulomb gauge gaussians.Comment: 3 pages, compressed postscript (uufiles), talk given at Lattice '9

    Symanzik flow on HISQ ensembles

    Full text link
    We report on a scale determination with gradient-flow techniques on the Nf=2+1+1N_f = 2 + 1 + 1 HISQ ensembles generated by the MILC collaboration. The lattice scale w0/aw_0/a, originally proposed by the BMW collaboration, is computed using Symanzik flow at four lattice spacings ranging from 0.15 to 0.06 fm. With a Taylor series ansatz, the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. We give a preliminary determination of the scale w0w_0 in physical units, along with associated systematic errors, and compare with results from other groups. We also present a first estimate of autocorrelation lengths as a function of flowtime for these ensembles.Comment: 7 pages, 6 pdf figures, 2 tables, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German

    Cytomegalovirus Management in Solid Organ Transplant Recipients: A Pre-COVID-19 Survey From the Working Group of the European Society for Organ Transplantation

    Get PDF
    Infections are leading causes of morbidity/mortality following solid organ transplantation (SOT) and cytomegalovirus (CMV) is among the most frequent pathogens, causing a considerable threat to SOT recipients. A survey was conducted 19 July–31 October 2019 to capture clinical practices about CMV in SOT recipients (e.g., how practices aligned with guidelines, how adequately treatments met patients’ needs, and respondents’ expectations for future developments). Transplant professionals completed a ∼30-minute online questionnaire: 224 responses were included, representing 160 hospitals and 197 SOT programs (41 countries; 167[83%] European programs). Findings revealed a heterogenous approach to CMV diagnosis and management and, sometimes, significant divergence from international guidelines. Valganciclovir prophylaxis (of variable duration) was administered by 201/224 (90%) respondents in D+/R− SOT and by 40% in R+ cases, with pre-emptive strategies generally reserved for R+ cases: DNA thresholds to initiate treatment ranged across 10–10,000 copies/ml. Ganciclovir-resistant CMV strains were still perceived as major challenges, and tailored treatment was one of the most important unmet needs for CMV management. These findings may help to design studies to evaluate safety and efficacy of new strategies to prevent CMV disease in SOT recipients, and target specific educational activities to harmonize CMV management in this challenging population

    Perturbative approach to the penguin-induced B→πϕB \to \pi \phi

    Get PDF
    Using a modified perturbative approach that includes the Sudakov resummation and transverse degrees of freedom we analyze the penguin-induced B−→π−ϕB^{-} \to \pi^{-}\phi decay by applying the next-to-leading order effective weak Hamiltonian. The modified perturbative method enables us to include nonfactorizable contributions and to control virtual momenta appearing in the process. Besides, we apply the three-scale factorization theorem for nonleptonic processes that offers the possibility of having the scale-independent product of short- and long-distance parts in the amplitude of the weak Hamiltonian. The calculation supports the results obtained in the BSW factorization approach, illustrating the electroweak penguin dominance and the branching ratio of order O(10−8){\cal O}(10^{-8}). However, the estimated prediction of 16% for the CP asymmetry is much larger than that obtained in the factorization approach.Comment: RevTex, 25 pages, 4 PostScript figures included, revised version, to be published in Phys.Rev.

    Structure preserving schemes for mean-field equations of collective behavior

    Full text link
    In this paper we consider the development of numerical schemes for mean-field equations describing the collective behavior of a large group of interacting agents. The schemes are based on a generalization of the classical Chang-Cooper approach and are capable to preserve the main structural properties of the systems, namely nonnegativity of the solution, physical conservation laws, entropy dissipation and stationary solutions. In particular, the methods here derived are second order accurate in transient regimes whereas they can reach arbitrary accuracy asymptotically for large times. Several examples are reported to show the generality of the approach.Comment: Proceedings of the XVI International Conference on Hyperbolic Problem
    • …
    corecore