61 research outputs found

    Thermal detection of single e-h pairs in a biased silicon crystal detector

    Get PDF
    We demonstrate that individual electron-hole pairs are resolved in a 1 cm2^2 by 4 mm thick silicon crystal (0.93 g) operated at ∼\sim35 mK. One side of the detector is patterned with two quasiparticle-trap-assisted electro-thermal-feedback transition edge sensor (QET) arrays held near ground potential. The other side contains a bias grid with 20\% coverage. Bias potentials up to ±\pm 160 V were used in the work reported here. A fiber optic provides 650~nm (1.9 eV) photons that each produce an electron-hole (e−h+e^{-} h^{+}) pair in the crystal near the grid. The energy of the drifting charges is measured with a phonon sensor noise σ\sigma ∼\sim0.09 e−h+e^{-} h^{+} pair. The observed charge quantization is nearly identical for h+h^+'s or e−e^-'s transported across the crystal.Comment: 4 journal pages, 5 figure

    Spatial imaging of charge transport in silicon at low temperature

    Get PDF
    We present direct imaging measurements of charge transport across a 1 cm × 1 cm × 4 mm crystal of high purity silicon (∼20 kΩ cm) at temperatures between 500 mK and 5 K. We use these data to determine the intervalley scattering rate of electrons as a function of the electric field applied along the ⟨111⟩ crystal axis, and we present a phenomenological model of intervalley scattering which explains the constant scattering rate seen at low-voltage for cryogenic temperatures. We also demonstrate direct imaging measurements of effective hole mass anisotropy, which is strongly dependent on both temperature and electric field strength. The observed effects can be explained by a warping of the valence bands for carrier energies near the spin-orbit splitting energy in silicon

    Spatial Imaging of Charge Transport in Silicon at Low Temperature

    Get PDF
    We present direct imaging measurements of charge transport across a 1 cm×\times 1 cm×\times 4 mm crystal of high purity silicon (∼\sim20 kΩ\Omegacm) at temperatures between 500 mK and and 5 K. We use these data to determine the intervalley scattering rate of electrons as a function of the electric field applied along the ⟨111⟩\langle 111 \rangle crystal axis, and we present a phenomenological model of intervalley scattering that explains the constant scattering rate seen at low-voltage for cryogenic temperatures. We also demonstrate direct imaging measurements of effective hole mass anisotropy, which is strongly dependent on both temperature and electric field strength. The observed effects can be explained by a warping of the valence bands for carrier energies near the spin-orbit splitting energy in silicon.Comment: 5 Pages, 5 Figures. Submitted to Applied Physics Letter

    Results from the Super Cryogenic Dark Matter Search (SuperCDMS) experiment at Soudan

    Get PDF
    We report the result of a blinded search for Weakly Interacting Massive Particles (WIMPs) using the majority of the SuperCDMS Soudan dataset. With an exposure of 1690 kg days, a single candidate event is observed, consistent with expected backgrounds. This analysis (combined with previous Ge results) sets an upper limit on the spin-independent WIMP--nucleon cross section of 1.4×10−441.4 \times 10^{-44} (1.0×10−441.0 \times 10^{-44}) cm2^2 at 46 GeV/c2c^2. These results set the strongest limits for WIMP--germanium-nucleus interactions for masses >>12 GeV/c2c^2
    • …
    corecore