13 research outputs found

    Passive and Active Oxidation of Si(100) by Atomic Oxygen:  A Theoretical Study of Possible Reaction Mechanisms

    Get PDF
    Reaction mechanisms for oxidation of the Si(100) surface by atomic oxygen were studied with high-level quantum mechanical methods in combination with a hybrid QM/MM (Quantum mechanics/Molecular Mechanics) method. Consistent with previous experimental and theoretical results, three structures, “back-bond”, “on-dimer”, and “dimer-bridge”, are found to be the most stable initial surface products for O adsorption (and in the formation of SiO2 films, i.e., passive oxidation). All of these structures have significant diradical character. In particular, the “dimer-bridge” is a singlet diradical. Although the ground state of the separated reactants, O+Si(100), is a triplet, once the O atom makes a chemical bond with the surface, the singlet potential energy surface is the ground state. With mild activation energy, these three surface products can be interconverted, illustrating the possibility of the thermal redistribution among the initial surface products. Two channels for SiO desorption (leading to etching, i.e., active oxidation) have been found, both of which start from the back-bond structure. These are referred to as the silicon-first (SF) and oxygen-first (OF) mechanisms. Both mechanisms require an 89.8 kcal/mol desorption barrier, in good agreement with the experimental estimates of 80−90 kcal/mol. “Secondary etching” channels occurring after initial etching may account for other lower experimental desorption barriers. The calculated 52.2 kcal/mol desorption barrier for one such secondary etching channel suggests that the great variation in reported experimental barriers for active oxidation may be due to these different active oxidation channels

    miRNA-145 is downregulated in atypical and anaplastic meningiomas and negatively regulates motility and proliferation of meningioma cells

    No full text
    Meningiomas are frequent, mostly benign intracranial or spinal tumors. A small subset of meningiomas is characterized by histological features of atypia or anaplasia that are associated with more aggressive biological behavior resulting in increased morbidity and mortality. Infiltration into the adjacent brain tissue is a major factor linked to higher recurrence rates. The molecular mechanisms of progression, including brain invasion are still poorly understood. We have studied the role of micro-RNA 145 (miR-145) in meningiomas and detected significantly reduced miR-145 expression in atypical and anaplastic tumors as compared with benign meningiomas. Overexpression of miR-145 in IOMM-Lee meningioma cells resulted in reduced proliferation, increased sensitivity to apoptosis, reduced anchorage-independent growth and reduction of orthotopic tumor growth in nude mice as compared with control cells. Moreover, meningioma cells with high miR-145 levels had impaired migratory and invasive potential in vitro and in vivo. PCR-array studies of miR145-overexpressing cells suggested that collagen type V alpha (COL5A1) expression is downregulated by miR-145 overexpression. Accordingly, COL5A1 expression was significantly upregulated in atypical and anaplastic meningiomas. Collectively, our data indicate an important anti-migratory and anti-proliferative function of miR-145 in meningiomas

    Piggery pond sludge as a nitrogen source for crops - 2. Assay of wet and stockpiled piggery pond sludge by successive cereal crops or direct measurement of soil available N

    No full text
    The appropriate use of wastes is a significant issue for the pig industry due to increasing pressure from regulatory authorities to protect the environment from pollution. Nitrogen contained in piggery pond sludge ( PPS) is a potential source of supplementary nutrient for crop production. Nitrogen contribution following the application of PPS to soil was obtained from 2 field experiments on the Darling Downs in southern Queensland on contrasting soil types, a cracking clay ( Vertosol) and a hardsetting sandy loam (Sodosol), and related to potentially mineralisable N from laboratory incubations conducted under controlled conditions and NO3- accumulation in the field. Piggery pond sludge was applied as-collected ( wet PPS) and following stockpiling to dry ( stockpiled PPS). Soil NO3- levels increased with increased application rates of wet and stockpiled PPS. Supplementary N supply from PPS estimated by fertiliser equivalence was generally unsatisfactory due to poor precision with this method, and also due to a high level of NO3- in the clay soil before the first assay crop. Also low recoveries of N by subsequent sorghum ( Sorghum bicolor) and wheat ( Triticum aestivum) assay crops at the 2 sites due to low in-crop rainfall in 1999 resulted in low apparent N availability. Over all, 29% ( range 12 - 47%) of total N from the wet PPS and 19% ( range 0 - 50%) from the stockpiled PPS were estimated to be plant-available N during the assay period. The high concentration of NO3- for the wet PPS application on sandy soil after the first assay crop ( 1998 barley, Hordeum vulgare) suggests that leaching of NO3- could be of concern when high rates of wet PPS are applied before infrequent periods of high precipitation, due primarily to the mineral N contained in wet PPS. Low yields, grain protein concentrations, and crop N uptake of the sorghum crop following the barley crop grown on the clay soil demonstrated a low residual value of N applied in PPS. NO3- in the sandy soil before sowing accounted for 79% of the variation in plant N uptake and was a better index than anaerobically mineralisable N ( 19% of variation explained). In clay soil, better prediction of crop N uptake was obtained when both anaerobically mineralisable N (39% of variation explained) and soil pro. le NO3- were used in combination (R-2 = 0.49)

    Difference-frequency combs in cold atom physics

    Get PDF
    Optical frequency combs provide the clockwork to relate optical frequencies to radio frequencies. Hence, combs allow optical frequencies to be measured with respect to a radio frequency where the accuracy is limited only by the reference signal. In order to provide a stable link between the radio and optical frequencies, the two parameters of the frequency comb must be fixed: the carrier envelope offset frequency, fceo, and the pulse repetition-rate, frep. We have developed the first optical frequency comb based on difference frequency generation (DFG) that eliminates fceo by design — specifically tailored for applications in cold atom physics. An fceo-free spectrum at 1550 nm is generated from a super continuum spanning more than an optical octave. Established amplification and frequency conversion techniques based on reliable telecom fibre technology allow the generation of multiple wavelength outputs. The DFG comb is a convenient tool to both stabilise laser sources and accurately measure optical frequencies in Rydberg experiments and more generally in quantum optics. In this paper we discuss the frequency comb design, characterization, and optical frequency measurement of Strontium Rydberg states. The DFG technique allows for a compact and robust, passively fceo stable frequency comb significantly improving reliability in practical applications

    Nitrous oxide emission from feedlot manure and green waste compost applied to Vertisols

    No full text
    Application of feedlot manure (FLM) to cropping and grazing soils could provide a valuable N nutrient resource. However, because of its high but variable N concentration, FLM has the potential for environmental pollution of water bodies and NO emission to the atmosphere. As a potential management tool, we utilised the low-nutrient green waste compost (GWC) to assess its effectiveness in regulating N release and the amount of NO emission from two Vertisols when both FLM and GWC were applied together. Cumulative soil NO emission over 32 weeks at 24°C and field capacity (70% water-filled pore space) for a black Vertisol (Udic Paleustert) was 45 mg NO m from unamended soil. This increased to 274 mg NO m when FLM was applied at 1 kg m and to 403 mg NO m at 2 kg m. In contrast, the emissions of 60 mg NO m when the soil was amended with GWC 1 kg m and 48 mg NO m at 2 kg m were not significantly greater than the unamended soil. Emission from a mixture of FLM and GWC applied in equal amounts (0.5 kg m) was 106 mg NO m and FLM applied at 0.5 kg m and GWC at 1.5 kg GWC m was 117 mg N2O m. Although cumulative NO emissions from an unamended grey Vertisol (Typic Chromustert) were only slightly higher than black Vertisol (57 mg N2O m), FLMapplication at 1 kg m increased NO emissions by 14 times (792 mg NO m) and at 2 kg m application by 22 times (1260 mg NO m-2). Application of GWC did not significantly increase NO emission (99 mg NO m at 1 kg m and 65 mg NO m at 2 kg m) above the unamended soil. As observed for the black Vertisol, a mixture of FLM (0.5 kg m) and GWC (0.5 or 1.5 kg m) reduced NO emission by >50% of that from the FLM alone, most likely by reducing the amount of mineral N (NH4 -N and NO -N) in the soil, as mineral N in soil and the NO emission were closely correlated
    corecore