165 research outputs found
Screening of charged impurities with multi-electron singlet-triplet spin qubits in quantum dots
Charged impurities in semiconductor quantum dots comprise one of the main
obstacles to achieving scalable fabrication and manipulation of singlet-triplet
spin qubits. We theoretically show that using dots that contain several
electrons each can help to overcome this problem through the screening of the
rough and noisy impurity potential by the excess electrons. We demonstrate how
the desired screening properties turn on as the number of electrons is
increased, and we characterize the properties of a double quantum dot
singlet-triplet qubit for small odd numbers of electrons per dot. We show that
the sensitivity of the multi-electron qubit to charge noise may be an order of
magnitude smaller than that of the two-electron qubit.Comment: 17 pages, 11 figures; typos corrected, minor revision
Bound Chains of Tilted Dipoles in Layered Systems
Ultracold polar molecules in multilayered systems have been experimentally
realized very recently. While experiments study these systems almost
exclusively through their chemical reactivity, the outlook for creating and
manipulating exotic few- and many-body physics in dipolar systems is
fascinating. Here we concentrate on few-body states in a multilayered setup. We
exploit the geometry of the interlayer potential to calculate the two- and
three-body chains with one molecule in each layer. The focus is on dipoles that
are aligned at some angle with respect to the layer planes by means of an
external eletric field. The binding energy and the spatial structure of the
bound states are studied in several different ways using analytical approaches.
The results are compared to stochastic variational calculations and very good
agreement is found. We conclude that approximations based on harmonic
oscillator potentials are accurate even for tilted dipoles when the geometry of
the potential landscape is taken into account.Comment: 10 pages, 6 figures. Submitted to Few-body Systems special issue on
Critical Stability, revised versio
Coastal oceanography and sedimentology in New Zealand, 1967-91.
This paper reviews research that has taken place on physical oceanography and sedimentology on New Zealand's estuaries and the inner shelf since c. 1967. It includes estuarine sedimentation, tidal inlets, beach morphodynamics, nearshore and inner shelf sedimentation, tides and coastal currents, numerical modelling, short-period waves, tsunamis, and storm surges. An extensive reference list covering both published and unpublished material is included. Formal teaching and research programmes dealing with coastal landforms and the processes that shape them were only introduced to New Zealand universities in 1964; the history of the New Zealand Journal of Marine and Freshwater Research parallels and chronicles the development of physical coastal science in New Zealand, most of which has been accomplished in last 25 years
Dimers, Effective Interactions, and Pauli Blocking Effects in a Bilayer of Cold Fermionic Polar Molecules
We consider a bilayer setup with two parallel planes of cold fermionic polar
molecules when the dipole moments are oriented perpendicular to the planes. The
binding energy of two-body states with one polar molecule in each layer is
determined and compared to various analytic approximation schemes in both
coordinate- and momentum-space. The effective interaction of two bound dimers
is obtained by integrating out the internal dimer bound state wave function and
its robustness under analytical approximations is studied. Furthermore, we
consider the effect of the background of other fermions on the dimer state
through Pauli blocking, and discuss implications for the zero-temperature
many-body phase diagram of this experimentally realizable system.Comment: 18 pages, 10 figures, accepted versio
Condensed Matter Theory of Dipolar Quantum Gases
Recent experimental breakthroughs in trapping, cooling and controlling
ultracold gases of polar molecules, magnetic and Rydberg atoms have paved the
way toward the investigation of highly tunable quantum systems, where
anisotropic, long-range dipolar interactions play a prominent role at the
many-body level. In this article we review recent theoretical studies
concerning the physics of such systems. Starting from a general discussion on
interaction design techniques and microscopic Hamiltonians, we provide a
summary of recent work focused on many-body properties of dipolar systems,
including: weakly interacting Bose gases, weakly interacting Fermi gases,
multilayer systems, strongly interacting dipolar gases and dipolar gases in 1D
and quasi-1D geometries. Within each of these topics, purely dipolar effects
and connections with experimental realizations are emphasized.Comment: Review article; submitted 09/06/2011. 158 pages, 52 figures. This
document is the unedited author's version of a Submitted Work that was
subsequently accepted for publication in Chemical Reviews, copyright American
Chemical Society after peer review. To access the final edited and published
work, a link will be provided soo
Model theory of finite and pseudofinite groups
This is a survey, intended both for group theorists and model theorists, concerning the structure of pseudofinite groups, that is, infinite models of the first-order theory of finite groups. The focus is on concepts from stability theory and generalisations in the context of pseudofinite groups, and on the information this might provide for finite group theory
Ammoniated electron as a solvent stabilized multimer radical anion
The excess electron in liquid ammonia ("ammoniated electron") is commonly
viewed as a cavity electron in which the s-type wave function fills the
interstitial void between 6-9 ammonia molecules. Here we examine an alternative
model in which the ammoniated electron is regarded as a solvent stabilized
multimer radical anion, as was originally suggested by Symons [Chem. Soc. Rev.
1976, 5, 337]. In this model, most of the excess electron density resides in
the frontier orbitals of N atoms in the ammonia molecules forming the solvation
cavity; a fraction of this spin density is transferred to the molecules in the
second solvation shell. The cavity is formed due to the repulsion between
negatively charged solvent molecules. Using density functional theory
calculations for small ammonia cluster anions in the gas phase, it is
demonstrated that such core anions would semi-quantitatively account for the
observed pattern of Knight shifts for 1-H and 14-N nuclei observed by NMR
spectroscopy and the downshifted stretching and bending modes observed by
infrared spectroscopy. It is speculated that the excess electrons in other
aprotic solvents (but not in water and alcohols) might be, in this respect,
analogous to the ammoniated electron, with substantial transfer of the spin
density into the frontier N and C orbitals of methyl, amino, and amide groups
forming the solvation cavity.Comment: 34 pages, 12 figures; to be submitted to J Phys Chem
General anaesthetic and airway management practice for obstetric surgery in England: a prospective, multi-centre observational study
There are no current descriptions of general anaesthesia characteristics for obstetric surgery, despite recent changes to patient baseline characteristics and airway management guidelines. This analysis of data from the direct reporting of awareness in maternity patients' (DREAMY) study of accidental awareness during obstetric anaesthesia aimed to describe practice for obstetric general anaesthesia in England and compare with earlier surveys and best-practice recommendations. Consenting patients who received general anaesthesia for obstetric surgery in 72 hospitals from May 2017 to August 2018 were included. Baseline characteristics, airway management, anaesthetic techniques and major complications were collected. Descriptive analysis, binary logistic regression modelling and comparisons with earlier data were conducted. Data were collected from 3117 procedures, including 2554 (81.9%) caesarean deliveries. Thiopental was the induction drug in 1649 (52.9%) patients, compared with propofol in 1419 (45.5%). Suxamethonium was the neuromuscular blocking drug for tracheal intubation in 2631 (86.1%), compared with rocuronium in 367 (11.8%). Difficult tracheal intubation was reported in 1 in 19 (95%CI 1 in 16-22) and failed intubation in 1 in 312 (95%CI 1 in 169-667). Obese patients were over-represented compared with national baselines and associated with difficult, but not failed intubation. There was more evidence of change in practice for induction drugs (increased use of propofol) than neuromuscular blocking drugs (suxamethonium remains the most popular). There was evidence of improvement in practice, with increased monitoring and reversal of neuromuscular blockade (although this remains suboptimal). Despite a high risk of difficult intubation in this population, videolaryngoscopy was rarely used (1.9%)
- âŠ