850 research outputs found

    Decaying Cosmological Constant of the Inflating Branes in the Randall-Sundrum -Oda Model

    Get PDF
    We examine the issue of the cosmological constant in the manymany inflatinginflating branes scenario, extending on two recent models by I.Oda and Randall-Sundrum. The exact solution in a closed form is found in the slow roll approximation of the radion. Defining an effective expansion rate, which depends on the location of each brane in the fifth dimension and demanding stability for this case we show that each positive tension brane has a localized, decaying cosmological constant (the opposite process applies to the negative energy branes [4]) . The reason is that the square of the effective expansion rate enters as a source term in the Einstein equations for the branes.Thus the brane has two scale factors depending on time and the fifth dimnesion respectively .The brane will roll along the fifth dimension in order to readjust its effective expansion rate in such a way that it compensates for its internal energy changes due to inflation and possible phase transitions.Comment: 9 pages, comments and ref.added, solution replaced with the exact one, submitted to PR

    Brane Induced Gravity: Codimension-2

    Full text link
    We review the results of arXiv:hep-th/0703190, on brane induced gravity (BIG) in 6D. Among a large diversity of regulated codimension-2 branes, we find that for near-critical tensions branes live inside very deep throats which efficiently compactify the angular dimension. In there, 4D gravity first changes to 5D, and only later to 6D. The crossover from 4D to 5D is independent of the tension, but the crossover from 5D to 6D is not. This shows how the vacuum energy problem manifests in BIG: instead of tuning vacuum energy to adjust the 4D curvature, generically one must tune it to get the desired crossover scales and the hierarchy between the scales governing the 4D \to 5D \to 6D transitions. In the near-critical limit, linearized perturbation theory remains under control below the crossover scale, and we find that linearized gravity around the vacuum looks like a scalar-tensor theory.Comment: 16 pages latex, 2 .eps figs, based on the talks given at the "Sowers Workshop", Virginia Tech, May 14-18, 2007, "Cosmology and Strings" workshop at ICTP, Trieste, Italy, July 9-13, 2007, "Dark Energy In the Universe", Hakone, Japan, Sep 1-4, 2007 and "Zagreb Workshop 2007", Zagreb, Croatia, Nov 9-11, 2007; v2: added reference

    Infinitely Large New Dimensions

    Get PDF
    We construct intersecting brane configurations in Anti-de-Sitter space localizing gravity to the intersection region, with any number nn of extra dimensions. This allows us to construct two kinds of theories with infinitely large new dimensions, TeV scale quantum gravity and sub-millimeter deviations from Newton's Law. The effective 4D Planck scale MPlM_{Pl} is determined in terms of the fundamental Planck scale MM_* and the AdSAdS radius of curvature LL via the familiar relation MPl2M2+nLnM_{Pl}^2 \sim M_{*}^{2+n} L^n; LL acts as an effective radius of compactification for gravity on the intersection. Taking MM_* \sim TeV and LL \sim sub-mm reproduces the phenomenology of theories with large extra dimensions. Alternately, taking ML1MPlM_* \sim L^{-1} \sim M_{Pl}, and placing our 3-brane a distance 100MPl1\sim 100 M_{Pl}^{-1} away from the intersection gives us a theory with an exponential determination of the Weak/Planck hierarchy.Comment: 4 pages, revtex, no figure

    Rotating Black Holes on Codimension-2 Branes

    Full text link
    It has recently been demonstrated that certain types of non-tensional stress-energy can live on tensional codimension-2 branes, including gravitational shockwaves and small Schwarzschild black holes. In this note we generalize the earlier Schwarzschild results, and construct the exact gravitational fields of small rotating black holes on a codimension-2 brane. We focus on the phenomenologically interesting case of a three-brane embedded in a spacetime with two compactified extra dimensions. For a nonzero tension on the brane, we verify that these solutions also show the ``lightning rod'' effect found in the Schwarzschild solutions, the net effect of which is to rescale the fundamental Planck mass. This allows for larger black hole parameters, such as the event horizon, angular momentum, and lifetime than would be naively expected for a tensionless brane. It is also found that a black hole with angular momentum pointing purely along the brane directions has a smaller horizon angular velocity than the corresponding tensionless case, while a hole with bulk components of angular momentum has a larger angular velocity.Comment: 7 pages, uses revte

    Cosmological Solution in M-theory on S^1/Z_2

    Get PDF
    We provide the first example of a cosmological solution of the Horava-Witten supergravity. This solution is obtained by exchanging the role of time with the radial coordinate of the transverse space to the five-brane soliton. On the boundary this corresponds to rotating an instanton solution into a tunneling process in a space with Lorentzian signature, leading to an expanding universe. Due to the freedom to choose different non-trivial Yang-Mills backgrounds on the boundaries, the two walls of the universe ( visible and hidden worlds) expand differently. However at late times the anisotropy is washed away by gravitational interactions.Comment: 10 pages, latex, no figur

    Type 0 Brane Inflation from Mirage Cosmology

    Get PDF
    We consider a three-dimensional brane-universe moving in a Type 0 String background. The motion induces on the brane a cosmological evolution which, for some range of the parameters, exhibits an inflationary phase.Comment: 11 pages, latex, one figur

    A Closer Look at Two AdS4AdS_4 Branes in an AdS5AdS_5 Bulk

    Full text link
    We investigate a scenario with two AdS4AdS_4 branes in an AdS5AdS_5 bulk. In this scenario there are two gravitons and we investigate the role played by each of them for different positions of the second brane. We show that both gravitons play a significant role only when the turn-around point in the warp factor is approximately equidistant from both branes. We find that the ultralight mode becomes heavy as the second brane approaches the turn-around point, and the physics begins to resemble that of the RS model. Thus we demonstrate the crucial role played by the turn-around in the warp factor in enabling the presence of both gravitons.Comment: 21 pages, late

    Hadron Masses and Screening from AdS Wilson Loops

    Get PDF
    We show that in strongly coupled N=4 SYM the binding energy of a heavy and a light quark is independent of the strength of the coupling constant. As a consequence we are able to show that in the presence of light quarks the analog of the QCD string can snap and color charges are screened. The resulting neutral mesons interact with each other only via pion exchange and we estimate the massesComment: 4 pages, revte
    corecore