1,705 research outputs found

    Diffusion in the Continuous-Imaginary-Time Quantum World-Line Monte Carlo Simulations with Extended Ensembles

    Full text link
    The dynamics of samples in the continuous-imaginary-time quantum world-line Monte Carlo simulations with extended ensembles are investigated. In the case of a conventional flat ensemble on the one-dimensional quantum S=1 bi-quadratic model, the asymmetric behavior of Monte Carlo samples appears in the diffusion process in the space of the number of vertices. We prove that a local diffusivity is asymptotically proportional to the number of vertices, and we demonstrate the asymmetric behavior in the flat ensemble case. On the basis of the asymptotic form, we propose the weight of an optimal ensemble as 1/n1/\sqrt{n}, where nn denotes the number of vertices in a sample. It is shown that the asymmetric behavior completely vanishes in the case of the proposed ensemble on the one-dimensional quantum S=1 bi-quadratic model.Comment: 4 pages, 2 figures, update a referenc

    Field-Induced Magnetic Order in Quantum Spin Liquids

    Full text link
    We study magnetic field-induced three-dimensional ordering transitions in low-dimensional quantum spin liquids, such as weakly coupled, antiferromagnetic spin-1/2 Heisenberg dimers and ladders. Using stochastic series expansion quantum Monte Carlo simulations, thermodynamic response functions are obtained down to ultra-low temperatures. We extract the critical scaling exponents which dictate the power-law dependence of the transition temperature on the applied magnetic field. These are compared with recent experiments on candidate materials and with predictions for the Bose-Einstein condensation of magnons obtained in mean-field theory.Comment: RevTex, 4 pages with 5 figure

    Field-Induced Magnetic Ordering in the Quantum Spin System KCuCl3_3

    Full text link
    KCuCl3_3 is a three-dimensional coupled spin-dimer system and has a singlet ground state with an excitation gap Δ/kB=31{\Delta}/k_{\rm B}=31 K. High-field magnetization measurements for KCuCl3_3 have been performed in static magnetic fields of up to 30 T and in pulsed magnetic fields of up to 60 T. The entire magnetization curve including the saturation region was obtained at T=1.3T=1.3 K. From the analysis of the magnetization curve, it was found that the exchange parameters determined from the dispersion relations of the magnetic excitations should be reduced, which suggests the importance of the renormalization effect in the magnetic excitations. The field-induced magnetic ordering accompanied by the cusplike minimum of the magnetization was observed as in the isomorphous compound TlCuCl3_3. The phase boundary was almost independent of the field direction, and is represented by the power law. These results are consistent with the magnon Bose-Einstein condensation picture for field-induced magnetic ordering.Comment: 9 pages, 7 figures, 9 eps files, revtex styl

    Random Bond Effect in the Quantum Spin System (Tl1x_{1-x}Kx_{x})CuCl3_3

    Full text link
    The effect of exchange bond randomness on the ground state and the field-induced magnetic ordering was investigated through magnetization measurements in the spin-1/2 mixed quantum spin system (Tl1x_{1-x}Kx_{x})CuCl3_3 for x<0.36x<0.36. Both parent compounds TlCuCl3_3 and KCuCl3_3 are coupled spin dimer systems, which have the singlet ground state with excitation gaps Δ/kB=7.7{\Delta}/k_{\rm B}=7.7 K and 31 K, respectively. Due to bond randomness, the singlet ground state turns into the magnetic state with finite susceptibility, nevertheless, the excitation gap remains. Field-induced magnetic ordering, which can be described by the Bose condensation of excited triplets, magnons, was observed as in the parent systems. The phase transition temperature is suppressed by the bond randomness. This behavior may be attributed to the localization effect.Comment: 19 pages, 7 figures, 12 eps files, revtex, will appear in PR

    Dimer-Quadrupolar Quantum Phase Transition in the Quasi-One-Dimensional Heisenberg Model with Biquadratic Interaction

    Full text link
    The quasi-one-dimensional S=1 Heisenberg antiferromagnet with a biquadratic term is investigated at zero temperature by quantum Monte Carlo simulation. As the magnitude of the inter-chain coupling is increased, the system undergoes a phase transition from a spontaneously dimerized phase to a N\'eel ordered or spin nematic phase. The numerical results suggest the possibility of an unconventional second-order transition in which the symmetry group characterizing one phase is not a subgroup of the other.Comment: 4 pages, 4 figure

    Synchronization in a neuronal feedback loop through asymmetric temporal delays

    Full text link
    We consider the effect of asymmetric temporal delays in a system of two coupled Hopfield neurons. For couplings of opposite signs, a limit cycle emerges via a supercritical Hopf bifurcation when the sum of the delays reaches a critical value. We show that the angular frequency of the limit cycle is independent of an asymmetry in the delays. However, the delay asymmetry determines the phase difference between the periodic activities of the two components. Specifically, when the connection with negative coupling has a delay much larger than the delay for the positive coupling, the system approaches in-phase synchrony between the two components. Employing variational perturbation theory (VPT), we achieve an approximate analytical evaluation of the phase shift, in good agreement with numerical results.Comment: 5 pages, 4 figure

    Recurrence Plot Based Measures of Complexity and its Application to Heart Rate Variability Data

    Full text link
    The knowledge of transitions between regular, laminar or chaotic behavior is essential to understand the underlying mechanisms behind complex systems. While several linear approaches are often insufficient to describe such processes, there are several nonlinear methods which however require rather long time observations. To overcome these difficulties, we propose measures of complexity based on vertical structures in recurrence plots and apply them to the logistic map as well as to heart rate variability data. For the logistic map these measures enable us not only to detect transitions between chaotic and periodic states, but also to identify laminar states, i.e. chaos-chaos transitions. The traditional recurrence quantification analysis fails to detect the latter transitions. Applying our new measures to the heart rate variability data, we are able to detect and quantify the laminar phases before a life-threatening cardiac arrhythmia occurs thereby facilitating a prediction of such an event. Our findings could be of importance for the therapy of malignant cardiac arrhythmias

    Performance Limitations of Flat Histogram Methods and Optimality of Wang-Landau Sampling

    Full text link
    We determine the optimal scaling of local-update flat-histogram methods with system size by using a perfect flat-histogram scheme based on the exact density of states of 2D Ising models.The typical tunneling time needed to sample the entire bandwidth does not scale with the number of spins N as the minimal N^2 of an unbiased random walk in energy space. While the scaling is power law for the ferromagnetic and fully frustrated Ising model, for the +/- J nearest-neighbor spin glass the distribution of tunneling times is governed by a fat-tailed Frechet extremal value distribution that obeys exponential scaling. We find that the Wang-Landau algorithm shows the same scaling as the perfect scheme and is thus optimal.Comment: 5 pages, 6 figure

    Field- and pressure-induced magnetic quantum phase transitions in TlCuCl_3

    Full text link
    Thallium copper chloride is a quantum spin liquid of S = 1/2 Cu^2+ dimers. Interdimer superexchange interactions give a three-dimensional magnon dispersion and a spin gap significantly smaller than the dimer coupling. This gap is closed by an applied hydrostatic pressure of approximately 2kbar or by a magnetic field of 5.6T, offering a unique opportunity to explore the both types of quantum phase transition and their associated critical phenomena. We use a bond-operator formulation to obtain a continuous description of all disordered and ordered phases, and thus of the transitions separating these. Both pressure- and field-induced transitions may be considered as the Bose-Einstein condensation of triplet magnon excitations, and the respective phases of staggered magnetic order as linear combinations of dimer singlet and triplet modes. We focus on the evolution with applied pressure and field of the magnetic excitations in each phase, and in particular on the gapless (Goldstone) modes in the ordered regimes which correspond to phase fluctuations of the ordered moment. The bond-operator description yields a good account of the magnetization curves and of magnon dispersion relations observed by inelastic neutron scattering under applied fields, and a variety of experimental predictions for pressure-dependent measurements.Comment: 20 pages, 17 figure
    corecore