689 research outputs found

    Ballistic Spin Injection from Fe into ZnSe and GaAs with a (001), (111), and (110) orientation

    Full text link
    We present first-principles calculations of ballistic spin injection in Fe/GaAs and Fe/ZnSe junctions with orientation (001), (111), and (110). We find that the symmetry mismatch of the Fe minority-spin states with the semiconductor conduction states can lead to extremely high spin polarization of the current through the (001) interface for hot and thermal injection processes. Such a symmetry mismatch does not exist for the (111) and (110) interfaces, where smaller spin injection efficiencies are found. The presence of interface states is found to lower the current spin polarization, both with and without a Schottky barrier. Finally, a higher bias can also affect the spin injection efficiency.Comment: 12 pages, 18 figure

    Monte Carlo simulations of ferromagnetism in p-CdMnTe quantum wells

    Full text link
    Monte Carlo simulations, in which the Schrodinger equation is solved at each Monte Carlo sweep, are employed to assess the influence of magnetization fluctuations,short-range antiferromagnetic interactions, disorder, magnetic polaron formation, and spin-Peierls instability on the carrier-mediated Ising ferromagnetism in two-dimensional electronic systems. The determined critical temperature and hysteresis are affected in a nontrivial way by the antiferromagnetic interactions. The findings explain striking experimental results for modulation-doped p-CdMnTe quantum wells.Comment: 4 pages, 4 figures, to be published in Physical Review Letters; replaced figure 4; revised tex

    Origin of the giant magnetic moments of Fe impurities on and in Cs films

    Full text link
    To explore the origin of the observed giant magnetic moments (∼7μB\sim 7 \mu_B) of Fe impurities on the surface and in the bulk of Cs films, we have performed the relativistic LSDA + U calculations using the linearized muffin-tin orbital (LMTO) band method. We have found that Fe impurities in Cs behave differently from those in noble metals or in Pd. Whereas the induced spin polarization of Cs atoms is negligible, the Fe ion itself is found to be the source of the giant magnetic moment. The 3d electrons of Fe in Cs are localized as the 4f electrons in rare-earth ions so that the orbital magnetic moment becomes as large as the spin magnetic moment. The calculated total magnetic moment of M=6.43μBM = 6.43 \mu_B, which comes mainly from Fe ion, is close to the experimentally observed value.Comment: 4 pages including 3 figures and 1 table. Submitted to PR

    Fiber tracking: A qualitative and quantitative comparison between four different software tools on the reconstruction of major white matter tracts

    Get PDF
    PURPOSE: Diffusion tensor imaging (DTI) enables in vivo reconstruction of white matter (WM) pathways. Considering the emergence of numerous models and fiber tracking techniques, we herein aimed to compare, both quantitatively and qualitatively, the fiber tracking results of four DTI software (Brainance, Philips FiberTrak, DSI Studio, NordicICE) on the reconstruction of representative WM tracts. MATERIALS AND METHODS: Ten healthy participants underwent 30-directional diffusion tensor imaging on a 3T-Philips Achieva TX MR-scanner. All data were analyzed by two independent sites of experienced raters with the aforementioned software and the following WM tracts were reconstructed: corticospinal tract (CST); forceps major (Fmajor); forceps minor (Fminor); cingulum bundle (CB); superior longitudinal fasciculus (SLF); inferior fronto-occipital fasciculus (IFOF). Visual inspection of the resulted tracts and statistical analysis (inter-rater and betweensoftware agreement; paired t-test) on fractional anisotropy (FA), axial and radial diffusivity (Daxial, Dradial) were applied for qualitative and quantitative evaluation of DTI software results. RESULTS: Qualitative evaluation of the extracted tracts confirmed anatomical landmarks at least for the core part of each tract, even though differences in the number of fibers extracted and the whole tract were evident, especially for the CST, Fmajor, Fminor and SLF. Descriptive values did not deviate from the expected range of values for healthy adult population. Substantial inter-rater agreement (intraclass correlation coefficient [ICC], Bland-Altman analysis) was found for all tracts (ICC; FA: 0.839-0.989, Daxial: 0.704-0.991, Dradial: 0.972-0.993). Low agreement for FA, Daxial and Dradial (ICC; Bland-Altman analysis) and significant paired t-test differences (p < 0.05) were detected regarding between-software agreement. CONCLUSIONS: Qualitative comparison of four different DTI software in addition to substantial inter-rater but poor between-software agreement highlight the differences on existing fiber tracking methodologies and several particularities of each WM tract, further supporting the need for further study in both clinical and research settings

    Preoperative tumor marking with indocyanine green (ICG) prior to minimally invasive colorectal cancer: a systematic review of current literature

    Get PDF
    AIMS: To describe the currently available evidence regarding the efficacy and safety of preoperative tumor marking using indocyanine green (ICG) prior to laparoscopic or robotic colorectal resections. METHODS: A systematic search for relevant studies was conducted using the following databases: Embase (OVID), MEDLINE® (OVID), APA PsycInfo (OVID), Global Health (OVID) and HMIC Health Management Information Consortium (OVID) through June 2022 reported according to PRISMA 2020 guidelines. Primary outcome was the detection rate of the tumor sites preoperatively marked with ICG. Secondary outcomes were timing of ICG injection in days prior to the operation and technique-related complications. RESULTS: Eight single center studies, published between 2008 and 2022, were identified yielding a total of 1,061 patients, of whom 696 were preoperatively tattooed with ICG. Injection dosage of diluted ICG ranged from 0.1–1.5 ml. Four studies used the saline test injection method prior to ICG injection. When the marking was placed within one week, the visualization rate was 650/668 (97%), whereas when it was longer than one week, the detection rate was 8/56 (14%). No severe complications were reported. CONCLUSION: Preoperative tumor marking using ICG prior to minimally invasive colorectal resections is safe and effective, allowing intraoperative tumor site location when performed up to a week prior to surgery without disturbing the surgical view in potential mild complications

    The effect of the spin-orbit interaction on the band gap of half-metals

    Get PDF
    The spin-orbit interaction can cause a nonvanishing density of states (DOS) within the minority-spin band gap of half-metals around the Fermi level. We examine the magnitude of the effect in Heusler alloys, zinc-blende half metals and diluted magnetic semiconductors, using first-principles calculations. We find that the ratio of spin-down to spin-up DOS at the Fermi level can range from below 1% (e.g. 0.5% for NiMnSb) over several percents (4.2% for (Ga,Mn)As) to 13% for MnBi.Comment: 5 pages, 3 figure

    Appearance of Half-Metallicity in the Quaternary Heusler Alloys

    Full text link
    I report systematic first-principle calculations of the quaternary Heusler alloys like Co2_2[Cr1−x_{1-x}Mnx_x]Al, Co2_2Mn[Al1−x_{1-x}Snx_x] and [Fe1−x_{1-x}Cox_x]2_2MnAl. I show that when the two limiting cases (x=0 or 1) correspond to a half-metallic compound, so do the intermediate cases. Moreover the total spin moment MtM_t in μB\mu_B scales linearly with the total number of valence electrons ZtZ_t (and thus with the concentration xx) following the relation Mt=Zt−24M_t=Z_t-24, independently of the origin of the extra valence electrons, confirming the Slater-Pauling behavior of the normal Heusler alloys. Finally I discuss in all cases the trends in the atomic projected DOSs and in the atomic spin moments.Comment: 4 pages, 3 figures, 2 Table

    Electrocatalytic hydrogen production by dinuclear cobalt(ii) compounds containing redox-active diamidate ligands: a combined experimental and theoretical study

    Get PDF
    The chiral dicobalt(II) complex [CoII2(μ2-L)2] (1) (H2L = N2,N6-di(quinolin-8-yl)pyridine-2,6-dicarboxamide) and its tert-butyl analogue [CoII2(μ2-LBu)2] (2) were synthesized and structurally characterized. Addition of one equivalent of AgSbF6 to the dichloromethane solution of 1 and 2 resulted in the isolation of the mixed-valent dicobalt(III,II) species [CoIIICoII(μ2-L)2]SbF6 (3) and [CoIIICoII(μ2-LBu)2]SbF6 (4). Homovalent 1 and 2 exhibited catalytic activity towards proton reduction in the presence of acetic acid (AcOH) as the substrate. The complexes are stable in solution while their catalytic turnover frequency is estimated at 10 and 34.6 h−1 molcat−1 for 1 and 2, respectively. Calculations reveal one-electron reduction of 1 is ligand-based, preserving the dicobalt(II) core and activating the ligand toward protonation at the quinoline group. This creates a vacant coordination site that is subsequently protonated to generate the catalytically ubiquitous Co(III) hydride. The dinuclear structure persists throughout where the distal Co(II) ion modulates the reactivity of the adjacent metal site by promoting ligand redox activity through spin state switching

    Introduction to half-metallic Heusler alloys: Electronic Structure and Magnetic Properties

    Full text link
    Intermetallic Heusler alloys are amongst the most attractive half-metallic systems due to the high Curie temperatures and the structural similarity to the binary semiconductors. In this review we present an overview of the basic electronic and magnetic properties of both Heusler families: the so-called half-Heusler alloys like NiMnSb and the the full-Heusler alloys like Co2_2MnGe. \textit{Ab-initio} results suggest that both the electronic and magnetic properties in these compounds are intrinsically related to the appearance of the minority-spin gap. The total spin magnetic moment MtM_t scales linearly with the number of the valence electrons ZtZ_t, such that Mt=Zt−24M_t=Z_t-24 for the full-Heusler and Mt=Zt−18M_t=Z_t-18 for the half-Heusler alloys, thus opening the way to engineer new half-metallic alloys with the desired magnetic properties.Comment: 28 pages, submitted for a special issue of 'Journal of Physics D: Applied Physics' on Heusler alloy

    Surface Properties of the Half- and Full-Heusler Alloys

    Full text link
    Using a full-potential \textit{ab-initio} technique I study the electronic and magnetic properties of the (001) surfaces of the half-Heusler alloys, NiMnSb, CoMnSb and PtMnSb and of the full-Heusler alloys Co2_2MnGe, Co2_2MnSi and Co2_2CrAl. The MnSb terminated surfaces of the half-Heusler compounds present properties similar to the bulk compounds and, although the half-metallicity is lost, an important spin-polarisation at the Fermi level. In contrast to this the Ni terminated surface shows an almost zero net spin-polarisation. While the bulk Co2_2MnGe and Co2_2MnSi are almost half-ferromagnetic, their surfaces lose the half-metallic character and the net spin-polarisation at the Fermi level is close to zero. Contrary to these compounds the CrAl terminated (001) surface of Co2_2CrAl shows a spin polarisation of about 84%.Comment: 14 pages, 6 figure
    • …
    corecore