208 research outputs found

    Van Hove singularities in the paramagnetic phase of the Hubbard model: a DMFT study

    Full text link
    Using the dynamical mean-field theory (DMFT) we study the paramagnetic phase of the Hubbard model with the density of states (DOS) corresponding to the three-dimensional cubic lattice and the two-dimensional square lattice, as well as a DOS with inverse square root singularity. We show that the electron correlations rapidly smooth out the square-root van Hove singularities (kinks) in the spectral function for the 3D lattice and that the Mott metal-insulator transition (MIT) as well as the magnetic-field-induced MIT differ only little from the well-known results for the Bethe lattice. The consequences of the logarithmic singularity in the DOS for the 2D lattice are more dramatic. At half filling, the divergence pinned at the Fermi level is not washed out, only its integrated weight decreases as the interaction is increased. While the Mott transition is still of the usual kind, the magnetic-field-induced MIT falls into a different universality class as there is no field-induced localization of quasiparticles. In the case of a power-law singularity in the DOS at the Fermi level, the power-law singularity persists in the presence of interaction, albeit with a different exponent, and the effective impurity model in the DMFT turns out to be a pseudo-gap Anderson impurity model with a hybridization function which vanishes at the Fermi level. The system is then a generalized Fermi liquid. At finite doping, regular Fermi liquid behavior is recovered.Comment: 7 pages, 9 figure

    Use of Novel Antidiabetic Agents in Patients with Type\ua02 Diabetes and COVID-19: A Critical Review

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). The latter is a pandemic that has the potential of developing into a severe illness manifesting as systemic inflammatory response syndrome, acute respiratory distress syndrome, multi-organ involvement and shock. In addition, advanced age and male sex and certain underlying health conditions, like type 2 diabetes mellitus (T2DM), predispose to a higher risk of greater COVID-19 severity and mortality. This calls for an urgent identification of antidiabetic agents associated with more favourable COVID-19 outcomes among patients with T2DM, as well as recognition of their potential underlying mechanisms. It is crucial that individuals with T2DM be kept under very stringent glycaemic control in order to avoid developing various cardiovascular, renal and metabolic complications associated with more severe forms of COVID-19 that lead to increased mortality. The use of novel antidiabetic agents dipeptidyl peptidase 4 inhibitors (DPP4i), sodium-glucose co-transporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP-1RAs) in subjects with T2DM may have beneficial effects on COVID-19 outcomes. However, relevant studies either show inconsistent results (DPP4i) or are still too few (SGLT2i and GLP-1RAs). Further research is therefore needed to assess the impact of these agents on COVID-19 outcomes

    The effect of inelastic processes on tunneling

    Full text link
    We study an electron that interacts with phonons or other linear or nonlinear excitations as it resonantly tunnels. The method we use is based on mapping a many-body problem in a large variational space exactly onto a one-body problem. The method is conceptually simpler than previous Green's function approaches, and allows the essentially exact numerical solution of much more general problems. We solve tunneling problems with transverse channels, multiple sites coupled to phonons, and multiple phonon degrees of freedom and excitations.Comment: 12 pages, REVTex, 4 figures in compressed tar .ps forma

    A dynamic i-motif with a duplex stem-loop in the long terminal repeat promoter of the HIV-1 proviral genome modulates viral transcription

    Get PDF
    I-motifs are non-canonical nucleic acids structures characterized by intercalated H-bonds between hemi-protonated cytosines. Evidence on the involvement of i-motif structures in the regulation of cellular processes in human cells has been consistently growing in the recent years. However, i-motifs within non-human genomes have never been investigated. Here, we report the characterization of i-motifs within the long terminal repeat (LTR) promoter of the HIV-1 proviral genome. Biophysical and biochemical analysis revealed formation of a predominant i-motif with an unprecedented loop composition. One-dimensional nuclear magnetic resonance investigation demonstrated formation of three G-C H-bonds in the long loop, which likely improve the structure overall stability. Pull-down experiments combined with mass spectrometry and protein crosslinking analysis showed that the LTR i-motif is recognized by the cellular protein hnRNP K, which induced folding at physiological conditions. In addition, hnRNP K silencing resulted in an increased LTR promoter activity, confirming the ability of the protein to stabilize the i-motif-forming sequence, which in turn regulates the LTR-mediated HIV-1 transcription. These findings provide new insights into the complexity of the HIV-1 virus and lay the basis for innovative antiviral drug design, based on the possibility to selectively recognize and target the HIV-1 LTR i-motif

    Fullerenol nanoparticles as a new delivery system for doxorubicin

    Get PDF
    Doxorubicin is a very potent chemotherapeutic drug, however its side effects limit its clinical use. The aim of this research was to investigate the properties of a fullerenol/doxorubicin nanocomposite, its potentially cytotoxic and genotoxic effects on malignant cell lines, as well as its toxicity towards zebra fish embryos. Chromatographic, NMR and mass spectral analysis of the nanocomposite imply that interactions between doxorubicin and fullerenol are non-covalent bonds. The stability of the nanocomposite was confirmed by the use of atomic force microscopy, dynamic light scattering and transmission electron microscopy. The nanocomposite, compared to the free doxorubicin at equivalent concentrations, significantly decreased the viability of MCF-7 and MDA-MB-231 cells. The flow cytometry results indicated that doxorubicin-loaded fullerenol could remarkably increase the uptake of doxorubicin suggesting that fullerenol might be a promising intracellular targeting carrier for the efficient delivery of antitumor drugs into tumor cells. The nanocomposite also affected cell cycle distribution. A genotoxicity test showed that the nanocomposite at all examined concentrations on MCF-7 and at lower concentrations on MDA-MB-231 cells caused DNA damage. Consequently, cell proliferation was notably reduced when compared with controls. Results of the zebrafish embryotoxicity assay showed a decreased overall toxicity, particularly cardiotoxicity and increased safety of the nanocomposite in comparison to doxorubicin alone, as manifested by a higher survival of embryos and less pericardial edema

    A review on hot cathode ionisation gauges with focus on a suitable design for measurement accuracy and stability

    Get PDF
    project 16NRM05 'Ion gauge'A literature review starting from 1950 is given on the design and geometry of ionisation gauge types with hot cathodes. Considerations on the material of the electrodes and of surface effects are included. The review focuses on the design issues for measurement accuracy, linearity, repeatability, reproducibility, and stability of sensitivity. Also, the attempts to reduce the lower measurement limit are reviewed to some extent.publishersversionpublishe

    Effects of liraglutide on obesity-associated functional hypogonadism in men

    Get PDF
    Lifestyle measures (LSMs) should be the first-line approach offered for obesity-related functional hypogonadism (FH). When LSMs fail, the role of testosterone replacement treatment (TRT) is unclear. GLP1 receptor agonist liraglutide is linked to progressive and sustained weight loss. A potential direct impact of GLP1 on hypothalamus-pituitary-testicular (HPT) axis was reported in animal models. We aimed to compare the effects of liraglutide and TRT on FH in obese men that had been poor responders to LSM, by means of reversal of FH and weight reduction. We designed a 16-week prospective randomized open-label study with 30 men (aged 46.5 ± 10.9 years, BMI 41.2 ± 8.4 kg/m2, mean ± s.d.) that were randomized to liraglutide 3.0 mg QD (LIRA) or 50 mg of 1% transdermal gel QD (TRT). Sexual function and anthropometric measures were assessed. Fasting blood was drawn for determination of endocrine and metabolic parameters followed by OGTT. Model-derived parameters including HOMAIR and calculated free testosterone (cFT) were calculated. Total testosterone significantly increased in both arms (+5.9 ± 7.2 in TRT vs +2.6 ± 3.5 nmol/L in LIRA) and led to improved sexual function. LIRA resulted in a significant increase of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) (P < 0.001 for between-treatment effect). Subjects treated with LIRA lost on average 7.9 ± 3.8 kg compared with a 0.9 ± 4.5 kg loss in TRT (P < 0.001). Metabolic syndrome was resolved in two patients in LIRA and in no subjects in TRT. Liraglutide was superior to TRT in improving an overall health benefit in men with obesity-associated FH after LSM failed

    Double exchange magnets: Spin-dynamics in the paramagnetic phase

    Full text link
    The electronic structure of perovskite manganese oxides is investigated in terms of a Kondo lattice model with ferromagnetic Hund coupling and antiferromagnetic exchange between t2gt_{2g}-spins using a finite temperature diagonalization technique. Results for the dynamic structure factor are consistent with recent neutron scattering experiments for the bilayer manganite La1.2_{1.2}Sr1.8_{1.8}Mn2_2O7_7 . The susceptibility shows Curie-Weiss behaviour and is used to derive a phase diagram. In the paramagnetic phase carriers are characterized as ferromagnetic polarons in an antiferromagnetic spin liquid.Comment: Revtex, 4 pages with 5 postscript figures include

    Evaluation and metrological performance of a novel ionisation vacuum gauge suitable as reference standard

    Get PDF
    Funding Information: This work has received funding from the EMPIR programme (projects 16NRM05 and 20SIP01) co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme and the Portuguese National Funding Agency for Science, Research and Technology in the framework of the project UIDB/FIS/ 00068/2020. Publisher Copyright: © 2023 The Author(s)Recently, a new type of ionization vacuum gauge was introduced, which was proposed as a reference and transfer standard in the range of 10-6 Pa to 10-2 Pa because of its excellent stability and linearity. In contrast to present models of ionisation vacuum gauges, all electrons have a well-defined path length through the ionisation space. This even allows one to predict the sensitivity for a gas species provided that the ionisation cross section of the gas molecules for electrons between 50 eV and 200 eV is known. Following the development of this gauge we investigated its metrological performance in terms of linearity, resolution, repeatability, reproducibility, transport and long-term stability, disturbances by magnetic fields, influence of the surrounding earth potential and so on. The gauge demonstrated excellent metrological properties and is indeed suitable as an accurate reference and transfer standard, but can also provide important economic benefits to manufacturers and users.publishersversionpublishe
    corecore