752 research outputs found
A Simple n-Dimensional Intrinsically Universal Quantum Cellular Automaton
We describe a simple n-dimensional quantum cellular automaton (QCA) capable
of simulating all others, in that the initial configuration and the forward
evolution of any n-dimensional QCA can be encoded within the initial
configuration of the intrinsically universal QCA. Several steps of the
intrinsically universal QCA then correspond to one step of the simulated QCA.
The simulation preserves the topology in the sense that each cell of the
simulated QCA is encoded as a group of adjacent cells in the universal QCA.Comment: 13 pages, 7 figures. In Proceedings of the 4th International
Conference on Language and Automata Theory and Applications (LATA 2010),
Lecture Notes in Computer Science (LNCS). Journal version: arXiv:0907.382
Diffuser-based computational imaging funduscope
Poor access to eye care is a major global challenge that could be ameliorated by
low-cost, portable, and easy-to-use diagnostic technologies. Diffuser-based imaging has the
potential to enable inexpensive, compact optical systems that can reconstruct a focused image
of an object over a range of defocus errors. Here, we present a diffuser-based computational
funduscope that reconstructs important clinical features of a model eye. Compared to existing
diffuser-imager architectures, our system features an infinite-conjugate design by relaying the
ocular lens onto the diffuser. This offers shift-invariance across a wide field-of-view (FOV) and
an invariant magnification across an extended depth range. Experimentally, we demonstrate
fundus image reconstruction over a 33° FOV and robustness to 4D refractive error using a
constant point-spread-function. Combined with diffuser-based wavefront sensing, this technology
could enable combined ocular aberrometry and funduscopic screening through a single diffuser
sensor.Published versio
Pion mass dependence of the semileptonic scalar form factor within finite volume
We calculate the scalar semileptonic kaon decay in finite volume at the
momentum transfer , using chiral perturbation
theory. At first we obtain the hadronic matrix element to be calculated in
finite volume. We then evaluate the finite size effects for two volumes with and and find that the difference between the finite
volume corrections of the two volumes are larger than the difference as quoted
in \cite{Boyle2007a}. It appears then that the pion masses used for the scalar
form factor in ChPT are large which result in large finite volume corrections.
If appropriate values for pion mass are used, we believe that the finite size
effects estimated in this paper can be useful for Lattice data to extrapolate
at large lattice size.Comment: 19 pages, 5 figures, accepted for publication in EPJ
Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum.
Autosomal recessive hereditary spastic paraplegia (ARHSP) with thin corpus
callosum (TCC) is a common and clinically distinct form of familial spastic
paraplegia that is linked to the SPG11 locus on chromosome 15 in most affected
families. We analyzed 12 ARHSP-TCC families, refined the SPG11 candidate interval
and identified ten mutations in a previously unidentified gene expressed
ubiquitously in the nervous system but most prominently in the cerebellum,
cerebral cortex, hippocampus and pineal gland. The mutations were either nonsense
or insertions and deletions leading to a frameshift, suggesting a
loss-of-function mechanism. The identification of the function of the gene will
provide insight into the mechanisms leading to the degeneration of the
corticospinal tract and other brain structures in this frequent form of ARHSP
Light Hadron Masses from Lattice QCD
This article reviews lattice QCD results for the light hadron spectrum. We
give an overview of different formulations of lattice QCD, with discussions on
the fermion doubling problem and improvement programs. We summarize recent
developments in algorithms and analysis techniques, that render calculations
with light, dynamical quarks feasible on present day computer resources.
Finally, we summarize spectrum results for ground state hadrons and resonances
using various actions.Comment: 53 pages, 24 figures, one table; Rev.Mod.Phys. (published version);
v2: corrected typ
- …