66 research outputs found

    The Nitric Oxide Pathway Provides Innate Antiviral Protection in Conjunction with the Type I Interferon Pathway in Fibroblasts

    Get PDF
    The innate host response to virus infection is largely dominated by the production of type I interferon and interferon stimulated genes. In particular, fibroblasts respond robustly to viral infection and to recognition of viral signatures such as dsRNA with the rapid production of type I interferon; subsequently, fibroblasts are a key cell type in antiviral protection. We recently found, however, that primary fibroblasts deficient for the production of interferon, interferon stimulated genes, and other cytokines and chemokines mount a robust antiviral response against both DNA and RNA viruses following stimulation with dsRNA. Nitric oxide is a chemical compound with pleiotropic functions; its production by phagocytes in response to interferon-γ is associated with antimicrobial activity. Here we show that in response to dsRNA, nitric oxide is rapidly produced in primary fibroblasts. In the presence of an intact interferon system, nitric oxide plays a minor but significant role in antiviral protection. However, in the absence of an interferon system, nitric oxide is critical for the protection against DNA viruses. In primary fibroblasts, NF-κB and interferon regulatory factor 1 participate in the induction of inducible nitric oxide synthase expression, which subsequently produces nitric oxide. As large DNA viruses encode multiple and diverse immune modulators to disable the interferon system, it appears that the nitric oxide pathway serves as a secondary strategy to protect the host against viral infection in key cell types, such as fibroblasts, that largely rely on the type I interferon system for antiviral protection

    Differences in access to Emergency Paediatric Intensive Care and care during Transport (DEPICT): study protocol for a mixed methods study

    Get PDF
    Introduction Following centralisation of UK paediatric intensive care, specialist retrieval teams were established who travel to general hospitals to stabilise and transport sick children to regional paediatric intensive care units (PICUs). There is national variation among these PICU retrieval teams (PICRTs) in terms of how quickly they reach the patient’s bedside and in the care provided during transport. The impact of these variations on clinical outcomes and the experience of stakeholders (patients, families and healthcare staff) is however unknown. The primary objective of this study is to address this evidence gap. Methods and analysis This mixed-methods project involves the following: (1) retrospective analysis of linked data from routine clinical audits (2014–2016) to assess the impact of service variations on 30-day mortality and other secondary clinical outcomes; (2) a prospective questionnaire study conducted at 24 PICUs and 9 associated PICRTs in England and Wales over a 12-month period in 2018 to collect experience data from parents of transported children as well as qualitative analysis of in-depth interviews with a purposive sample of patients, parents and staff to assess the impact of service variations on patient/family experience; (3) health economic evaluation analysing transport service costs (and other associated costs) against lives saved and longer term measurements of quality of life at 12 months in transported children and (4) mathematical modelling evaluating the costs and potential impact of different service configurations. A final work stream involves a series of stakeholder workshops to synthesise study findings and generate recommendations. Ethics and dissemination The study has been reviewed and approved by the Health Research Authority, ref: 2 18 569. Study results will be actively disseminated through peer-reviewed journals, conference presentations, social media, print and broadcast media, the internet and stakeholder workshops

    Genetic variation in vitamin D-related genes and risk of colorectal cancer in African Americans

    Get PDF
    PurposeDisparities in both colorectal cancer (CRC) incidence and survival impact African Americans (AAs) more than other US ethnic groups. Because vitamin D is thought to protect against CRC and AAs have lower serum vitamin D levels, genetic variants that modulate the levels of active hormone in the tissues could explain some of the cancer health disparity. Consequently, we hypothesized that genetic variants in vitamin D-related genes are associated with CRC risk.MethodsTo test this hypothesis, we studied 39 potentially functional single-nucleotide polymorphisms (SNPs) in eight genes (CYP2R1, CYP3A4, CYP24A1, CYP27A1, CYP27B1, GC, DHCR7, and VDR) in 961 AA CRC cases and 838 healthy AA controls from Chicago and North Carolina. We tested whether SNPs are associated with CRC incidence using logistic regression models to calculate p values, odds ratios, and 95% confidence intervals. In the logistic regression, we used a log-additive genetic model and used age, gender, and percent West African ancestry, which we estimated with the program STRUCTURE, as covariates in the models.ResultsA nominally significant association was detected between CRC and the SNP rs12794714 in the vitamin D 25-hydroxylase gene CYP2R1 (p=0.019), a SNP that has previously been associated with serum vitamin D levels. Two SNPs, rs16847024 in the GC gene and rs6022990 in the CYP24A1 gene, were nominally associated with left-sided CRC (p=0.015 and p=0.018, respectively).ConclusionsOur results strongly suggest that genetic variation in vitamin D-related genes could affect CRC susceptibility in AAs. Electronic supplementary materialThe online version of this article (doi:10.1007/s10552-014-0361-y) contains supplementary material, which is available to authorized users

    From sabotage to camouflage: viral evasion of cytotoxic T lymphocyte and natural killer cell-mediated immunity

    No full text
    The outcome of a virus infection is strongly influenced by interactions between host immune defences and virus 'anti-defence' mechanisms. For many viruses, their continued survival depends on, the speed of their attach: their capacity to replicate and transmit to uninfected hosts prior to their elimination by an effective immune response. In contrast, the success of persistent viruses lies in their capacity for immunological subterfuge: the evasion of host defence mechanisms by either mutation (covered elsewhere in this issue, by Gould and Bangham, pp. 321-328) or interference with the action of host cellular proteins that are important components of the immune response. This review will focus on the strategies employed by persistent viruses against two formidable host defences against virus infection: the CD8+ cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses

    Transneuronal tracing of airways-related sensory circuitry using herpes simplex virus 1, strain H129

    No full text
    Sensory input from the airways to suprapontine brain regions contributes to respiratory sensations and the regulation of respiratory function. However, relatively little is known about the central organization of this higher brain circuitry. We exploited the properties of the H129 strain of herpes simplex virus 1 (HSV-1) to perform anterograde transneuronal tracing of the central projections of airway afferent nerve pathways. The extrathoracic trachea in Sprague–Dawley rats was inoculated with HSV-1 H129, and tissues along the neuraxis were processed for HSV-1 immunoreactivity. H129 infection appeared in the vagal sensory ganglia within 24 h and the number of infected cells peaked at 72 h. Brainstem nuclei, including the nucleus of the solitary tract and trigeminal sensory nuclei were infected within 48 h, and within 96 h infected cells were evident within the pons (lateral and medial parabrachial nuclei), thalamus (ventral posteromedial, ventral posterolateral, submedius, and reticular nuclei), hypothalamus (paraventricular and lateral nuclei), subthalamus (zona incerta), and amygdala (central and anterior amygdala area). At later times H129 was detected in cortical forebrain regions including the insular, orbital, cingulate, and somatosensory cortices. Vagotomy significantly reduced the number of infected cells within vagal sensory nuclei in the brainstem, confirming the main pathway of viral transport is through the vagus nerves. Sympathetic postganglionic neurons in the stellate and superior cervical ganglia were infected by 72 h, however, there was no evidence for retrograde transynaptic movement of the virus in sympathetic pathways in the central nervous system (CNS). These data demonstrate the organization of key structures within the CNS that receive afferent projections from the extrathoracic airways that likely play a role in the perception of airway sensations

    In vitro characterisation of high and low virulence isolates of equine herpesvirus-1 and-4

    No full text
    Basic in vitro characteristics of high and low virulence isolates of equine herpesviruses-1 and -4 were investigated with particular reference made to the Ab4 and V592 isolates of EHV-1 as both have distinct endotheliotropism and clinical outcomes in pony challenge studies. Additionally, some EHV-4 isolates that showed variations in clinical outcome were included in some experiments. The aim of the study was to identify an in vitro characteristic that would differentiate strains of known virulence. Such a system could then be applied to vaccine and virulence studies as an effective screening tool. Viral growth kinetics in a variety of cell culture systems, plaque size, ability to replicate in fetal endothelium in organ culture, and sensitivity to acyclovir were compared. No reliable marker system that differentiated between higher and lower virulence isolates of EHV-1 and EHV-4 was identified. (C) 2003 Elsevier Science Ltd. All rights reserved

    Use of polarised equine endothelial cell cultures and an in vitro thrombosis model for potential characterisation of EHV-1 strain variation

    No full text
    Equine herpesvirus-1 (EHV-1) is responsible for respiratory disease and abortion in pregnant mares. Some high virulence isolates of EHV-1 also cause neurological disease. The pathogenesis of both abortion and neurological disease relates in part. to thrombus formation occurring in the pregnant uterus and central nervous system. The differences in disease outcome may relate to differing abilities of high and low virulence EHV-1 isolates to cause cell-associated viraemia. infect endothelial cells and cause thrombosis at sites distant from the respiratory tract. This study attempted to identify in vitro assays, which could be used to characterise the interaction between these isolates, equine endothelial cells and clotting factors. No significant difference was found between the growth kinetics of high and low virulence isolates of EHV-1 in polarised endothelial cells. For both isolates, virus was released preferentially from the apical surface of the polarised cells. The functional effects of viral infection on endothelial cells, with reference to virally-induced thrombosis were then investigated. Endothelial cells were grown on microcarrier beads, infected with EHV-1 and assayed for procoagulant activity. No significant difference in clotting time was observed between mock and EHV-1 infected endothelial cells in microcarrier cultures. Thus the degree of thrombosis may reflect a more complex interaction between endothelial cells, circulating leucocytes and other factors in the microenvironment. (c) 2005 Elsevier B.V. All rights reserved

    Distinct Brainstem and Forebrain Circuits Receiving Tracheal Sensory Neuron Inputs Revealed Using a Novel Conditional Anterograde Transsynaptic Viral Tracing System

    No full text
    Sensory nerves innervating the mucosa of the airways monitor the local environment for the presence of irritant stimuli and, when activated, provide input to the nucleus of the solitary tract (Sol) and paratrigeminal nucleus (Pa5) in the medulla to drive a variety of protective behaviors. Accompanying these behaviors are perceivable sensations that, particularly for stimuli in the proximal end of the airways, can be discrete and localizable. Airway sensations likely reflect the ascending airway sensory circuitry relayed via the Sol and Pa5, which terminates broadly throughout the CNS. However, the relative contribution of the Sol and Pa5 to these ascending pathways is not known. In the present study, we developed and characterized a novel conditional anterograde transneuronal viral tracing system based on the H129 strain of herpes simplex virus 1 and used this system in rats along with conventional neuroanatomical tracing with cholera toxin B to identify subcircuits in the brainstem and forebrain that are in receipt of relayed airway sensory inputs via the Sol and Pa5. We show that both the Pa5 and proximal airways disproportionately receive afferent terminals arising from the jugular (rather than nodose) vagal ganglia and the output of the Pa5 is predominately directed toward the ventrobasal thalamus. We propose the existence of a somatosensory-like pathway from the proximal airways involving jugular ganglia afferents, the Pa5, and the somatosensory thalamus and suggest that this pathway forms the anatomical framework for sensations arising from the proximal airway mucosa
    • …
    corecore