26,378 research outputs found
Temperature Dependence of Gluon and Quark Condensates as from Linear Confinement
The gluon and quark condensates and their temperature dependence are
investigated within QCD premises. The input for the former is a gauge invariant
kernel made up of the direct (D), exchange (X) and contact(C) QCD
interactions in the lowest order, but with the perturbative propagator
replaced by a `non-perturbative form obtained via two
differentiations: , ( a scale
parameter), and then setting , to simulate linear confinement. Similarly
for the input kernel the gluon propagator is replaced by the above
form. With these `linear' simulations, the respective condensates are
obtained by `looping' up the gluon and quark lines in the standard manner.
Using Dimensional regularization (DR), the necessary integrals yield the
condensates plus temperature corrections, with a common scale parameter
for both. For gluons the exact result is . Evaluation
of the quark condensate is preceded by an approximate solution of the SDE for
the mass function , giving a recursive formula, with convergence achieved
at the third iteration. Setting the scale parameter equal to the
universal Regge slope , the gluon and quark condensates at T=0 are
found to be and respectively, in fair accord
with QCD sum rule values. Next, the temperature corrections (of order
for both condensates) is determined via finite-temperature field theory a la
Matsubara. Keywords: Gluon Condensate, mass tensor, gauge invariance, linear
confinement, finite-temperature, contour-closing. PACS: 11.15.Tk ; 12.38.Lg ;
13.20.CzComment: 13 pages (LaTeX) including 2 figure
Edge and bulk merons in double quantum dots with spontaneous interlayer phase coherence
We have investigated nucleation of merons in double quantum dots when a
lateral distortion with a reflection symmetry is present in the confinement
potential. We find that merons can nucleate both inside and at the edge of the
dots. In addition to these merons, our results show that electron density
modulations can be also present inside the dots. An edge meron appears to have
approximately a half integer winding number.Comment: 5 pages, 4 figures, Proceedings of 17th International Conference on
High Magnetic Fields in Semiconductor Physic
Quantum fluctuations of Cosmological Perturbations in Generalized Gravity
Recently, we presented a unified way of analysing classical cosmological
perturbation in generalized gravity theories. In this paper, we derive the
perturbation spectrums generated from quantum fluctuations again in unified
forms. We consider a situation where an accelerated expansion phase of the
early universe is realized in a particular generic phase of the generalized
gravity. We take the perturbative semiclassical approximation which treats the
perturbed parts of the metric and matter fields as quantum mechanical
operators. Our generic results include the conventional power-law and
exponential inflations in Einstein's gravity as special cases.Comment: 5 pages, revtex, no figure
Unified Analysis of Cosmological Perturbations in Generalized Gravity
In a class of generalized Einstein's gravity theories we derive the equations
and general asymptotic solutions describing the evolution of the perturbed
universe in unified forms. Our gravity theory considers general couplings
between the scalar field and the scalar curvature in the Lagrangian, thus
includes broad classes of generalized gravity theories resulting from recent
attempts for the unification. We analyze both the scalar-type mode and the
gravitational wave in analogous ways. For both modes the large scale evolutions
are characterized by the same conserved quantities which are valid in the
Einstein's gravity. This unified and simple treatment is possible due to our
proper choice of the gauges, or equivalently gauge invariant combinations.Comment: 4 pages, revtex, no figure
Stellar structures in the outer regions of M33
We present Subaru/Suprime-Cam deep V and I imaging of seven fields in the
outer regions of M33. Our aim is to search for stellar structures corresponding
to extended HI clouds found in a recent 21-cm survey of the galaxy. Three
fields probe a large HI complex to the southeastern (SE) side of the galaxy. An
additional three fields cover the northwestern (NW) side of the galaxy along
the HI warp. A final target field was chosen further north, at a projected
distance of approximately 25 kpc, to study part of the large stellar plume
recently discovered around M33. We analyse the stellar population at R > 10 kpc
by means of V, I colour magnitude diagrams reaching the red clump. Evolved
stellar populations are found in all fields out to 120' (~ 30 kpc), while a
diffuse population of young stars (~ 200 Myr) is detected out to a
galactocentric radius of 15 kpc. The mean metallicity in the southern fields
remains approximately constant at [M/H] = -0.7 beyond the edge of the optical
disc, from 40' out to 80'. Along the northern fields probing the outer \hi
disc, we also find a metallicity of [M/H] = -0.7 between 35' and 70' from the
centre, which decreases to [M/H] = -1.0 at larger angular radii out to 120'. In
the northernmost field, outside the disc extent, the stellar population of the
large stellar feature possibly related to a M33-M31 interaction is on average
more metal-poor ([M/H] = -1.3) and older (> 6 Gyr). An exponential disc with a
large scale-length (~ 7 kpc) fits well the average distribution of stars
detected in both the SE and NW regions from a galactocentric distance of 11 kpc
out to 30 kpc. The stellar distribution at large radii is disturbed and,
although there is no clear correlation between the stellar substructures and
the location of the HI clouds, this gives evidence for tidal interaction or
accretion events.Comment: 13 pages, 13 figures. Accepted for publications in Astronomy and
Astrophysics; minor revisions of the tex
Relativistic Hydrodynamic Cosmological Perturbations
Relativistic cosmological perturbation analyses can be made based on several
different fundamental gauge conditions. In the pressureless limit the variables
in certain gauge conditions show the correct Newtonian behaviors. Considering
the general curvature () and the cosmological constant () in the
background medium, the perturbed density in the comoving gauge, and the
perturbed velocity and the perturbed potential in the zero-shear gauge show the
same behavior as the Newtonian ones in general scales. In the first part, we
elaborate these Newtonian correspondences. In the second part, using the
identified gauge-invariant variables with correct Newtonian correspondences, we
present the relativistic results with general pressures in the background and
perturbation. We present the general super-sound-horizon scale solutions of the
above mentioned variables valid for general , , and generally
evolving equation of state. We show that, for vanishing , the
super-sound-horizon scale evolution is characterised by a conserved variable
which is the perturbed three-space curvature in the comoving gauge. We also
present equations for the multi-component hydrodynamic situation and for the
rotation and gravitational wave.Comment: 16 pages, no figure, To appear in Gen. Rel. Gra
Mounting technique for pressure transducers minimizes measurement interferences
Miniaturized transducers are fabricated from commercially available four-arm semiconductor gages; transducers are connected as bridge circuit and mounted on internal face of small diaphragm. Jacket made of conductive plastic may be needed to avoid buildup or static charges
- …