34 research outputs found

    Influence of strain on anisotropic thermoelectric transport of Bi2_2Te3_3 and Sb2_2Te3_3

    Full text link
    On the basis of detailed first-principles calculations and semi-classical Boltzmann transport, the anisotropic thermoelectric transport properties of Bi2_2Te3_3 and Sb2_2Te3_3 under strain were investigated. It was found that due to compensation effects of the strain dependent thermopower and electrical conductivity, the related powerfactor will decrease under applied in-plane strain for Bi2_2Te3,whilebeingstableforSb_3, while being stable for Sb_2TeTe_3.Aclearpreferenceforthermoelectrictransportunderholedoping,aswellasfortheinplanetransportdirectionwasfoundforbothtellurides.Incontrasttotheelectricalconductivityanisotropy,theanisotropyofthethermopowerwasalmostrobustunderappliedstrain.TheassumptionofananisotropicrelaxationtimeforBi. A clear preference for thermoelectric transport under hole-doping, as well as for the in-plane transport direction was found for both tellurides. In contrast to the electrical conductivity anisotropy, the anisotropy of the thermopower was almost robust under applied strain. The assumption of an anisotropic relaxation time for Bi_2TeTe_3$ suggests, that already in the single crystalline system strong anisotropic scattering effects should play a role

    Thermoelectric transport in strained Si and Si/Ge heterostructures

    Full text link
    The anisotropic thermoelectric transport properties of bulk silicon strained in [111]-direction were studied by detailed first-principles calculations focussing on a possible enhancement of the power factor. Electron as well as hole doping were examined in a broad doping and temperature range. At low temperature and low doping an enhancement of the power factor was obtained for compressive and tensile strain in the electron-doped case and for compressive strain in the hole-doped case. For the thermoelectrically more important high temperature and high doping regime a slight enhancement of the power factor was only found under small compressive strain with the power factor overall being robust against applied strain. To extend our findings the anisotropic thermoelectric transport of an [111]-oriented Si/Ge superlattice was investigated. Here, the cross-plane power factor under hole-doping was drastically suppressed due to quantum-well effects, while under electron-doping an enhanced power factor was found. With that, we state a figure of merit of ZT=0.2=0.2 and ZT=1.4=1.4 at T=\unit[300]{K} and T=\unit[900]{K} for the electron-doped [111]-oriented Si/Ge superlattice. All results are discussed in terms of band structure features

    AbAb InitioInitio Study of Magnetic Tunnel Junctions Based on Half-Metallic and Spin-Gapless Semiconducting Heusler Compounds: Reconfigurable Diode and Inverse Tunnel-Magnetoresistance Effect

    Full text link
    Magnetic tunnel junctions (MTJs) have attracted strong research interest within the last decades due to their potential use as nonvolatile memory such as MRAM as well as for magnetic logic applications. Half-metallic magnets (HMMs) have been suggested as ideal electrode materials for MTJs to achieve an extremely large tunnel-magnetoresistance (TMR) effect. Despite their high TMR ratios, MTJs based on HMMs do not exhibit current rectification, i.e., a diode effect, which was achieved in a magnetic tunnel junction concept based on HMMs and type-II spin-gapless semiconductors (SGSs). The proposed concept has recently been experimentally demonstrated using Heusler compounds. In the present work, we investigate from first-principles MTJs based on type-II SGS and HMM quaternary Heusler compounds FeVTaAl, FeVTiSi, MnVTiAl, and CoVTiSb. Our abab initioinitio quantum transport calculations based on a nonequilibrium Green's function method have demonstrated that the MTJs under consideration exhibit current rectification with relatively high on:off ratios. We show that, in contrast to conventional semiconductor diodes, the rectification bias voltage window (or breakdown voltage) of the MTJs is limited by the spin gap of the HMM and SGS Heusler compounds. A unique feature of the present MTJs is that the diode effect can be configured dynamically, i.e., depending on the relative orientation of the magnetization of the electrodes, the MTJ allows the electrical current to pass either in one or the other direction, which leads to an inverse TMR effect. The combination of nonvolatility, reconfigurable diode functionality, tunable rectification voltage window, and high Curie temperature of the electrode materials makes the proposed MTJs very promising for room-temperature spintronic applications and opens ways to magnetic memory and logic concepts as well as logic-in-memory computing.Comment: 14+7 pages, 7+10 figure

    Strong influence of the complex bandstructure on the tunneling electroresistance: A combined model and ab-initio study

    Full text link
    The tunneling electroresistance (TER) for ferroelectric tunnel junctions (FTJs) with BaTiO_{3} (BTO) and PbTiO}_{3} (PTO) barriers is calculated by combining the microscopic electronic structure of the barrier material with a macroscopic model for the electrostatic potential which is caused by the ferroelectric polarization. The TER ratio is investigated in dependence on the intrinsic polarization, the chemical potential, and the screening properties of the electrodes. A change of sign in the TER ratio is obtained for both barrier materials in dependence on the chemical potential. The inverse imaginary Fermi velocity describes the microscopic origin of this effect; it qualitatively reflects the variation and the sign reversal of the TER. The quantity of the imaginary Fermi velocity allows to obtain detailed information on the transport properties of FTJs by analyzing the complex bandstructure of the barrier material.Comment: quality of figures reduce

    Lorenz function of Bi2_{2}Te3_{3}/Sb2_{2}Te3_{3} superlattices

    Full text link
    Combining first principles density functional theory and semi-classical Boltzmann transport, the anisotropic Lorenz function was studied for thermoelectric Bi2_{2}Te3_{3}/Sb2_{2}Te3_{3} superlattices and their bulk constituents. It was found that already for the bulk materials Bi2_{2}Te3_{3} and Sb2_{2}Te3_{3}, the Lorenz function is not a pellucid function on charge carrier concentration and temperature. For electron-doped Bi2_{2}Te3_{3}/Sb2_{2}Te3_{3} superlattices large oscillatory deviations for the Lorenz function from the metallic limit were found even at high charge carrier concentrations. The latter can be referred to quantum well effects, which occur at distinct superlattice periods

    The Computational 2D Materials Database: High-Throughput Modeling and Discovery of Atomically Thin Crystals

    Get PDF
    We introduce the Computational 2D Materials Database (C2DB), which organises a variety of structural, thermodynamic, elastic, electronic, magnetic, and optical properties of around 1500 two-dimensional materials distributed over more than 30 different crystal structures. Material properties are systematically calculated by state-of-the art density functional theory and many-body perturbation theory (G0 ⁣_0\!W\!_0 and the Bethe-Salpeter Equation for \sim200 materials) following a semi-automated workflow for maximal consistency and transparency. The C2DB is fully open and can be browsed online or downloaded in its entirety. In this paper, we describe the workflow behind the database, present an overview of the properties and materials currently available, and explore trends and correlations in the data. Moreover, we identify a large number of new potentially synthesisable 2D materials with interesting properties targeting applications within spintronics, (opto-)electronics, and plasmonics. The C2DB offers a comprehensive and easily accessible overview of the rapidly expanding family of 2D materials and forms an ideal platform for computational modeling and design of new 2D materials and van der Waals heterostructures.Comment: Add journal reference and DOI; Minor updates to figures and wordin

    Thermoelectric transport in Bi2Te3/Sb2Te3\text{Bi}_2\text{Te}_3/\text{Sb}_2\text{Te}_3 superlattices

    Full text link
    The thermoelectric transport properties of Bi2Te3/Sb2Te3\text{Bi}_2\text{Te}_3/\text{Sb}_2\text{Te}_3superlattices are analyzed on the basis of first-principles calculations and semi-classical Boltzmann theory. The anisotropy of the thermoelectric transport under electron and hole-doping was studied in detail for different superlattice periods at changing temperature and charge carrier concentrations. A clear preference for thermoelectric transport under hole-doping, as well as for the in-plane transport direction was found for all superlattice periods. At hole-doping the electrical transport anisotropies remain bulk-like for all investigated systems, while under electron-doping quantum confinement leads to strong suppression of the cross-plane thermoelectric transport at several superlattice periods. In addition, insights on the Lorenz function, the electronic contribution to the thermal conductivity and the resulting figure of merit are given
    corecore