The thermoelectric transport properties of
Bi2Te3/Sb2Te3superlattices are analyzed on
the basis of first-principles calculations and semi-classical Boltzmann theory.
The anisotropy of the thermoelectric transport under electron and hole-doping
was studied in detail for different superlattice periods at changing
temperature and charge carrier concentrations. A clear preference for
thermoelectric transport under hole-doping, as well as for the in-plane
transport direction was found for all superlattice periods. At hole-doping the
electrical transport anisotropies remain bulk-like for all investigated
systems, while under electron-doping quantum confinement leads to strong
suppression of the cross-plane thermoelectric transport at several superlattice
periods. In addition, insights on the Lorenz function, the electronic
contribution to the thermal conductivity and the resulting figure of merit are
given