46 research outputs found

    A distinct adipose tissue gene expression response to caloric restriction predicts 6-mo weight maintenance in obese subjects

    Get PDF
    BACKGROUND: Weight loss has been shown to reduce risk factors associated with cardiovascular disease and diabetes; however, successful maintenance of weight loss continues to pose a challenge. OBJECTIVE: The present study was designed to assess whether changes in subcutaneous adipose tissue (scAT) gene expression during a low-calorie diet (LCD) could be used to differentiate and predict subjects who experience successful short-term weight maintenance from subjects who experience weight regain. DESIGN: Forty white women followed a dietary protocol consisting of an 8-wk LCD phase followed by a 6-mo weight-maintenance phase. Participants were classified as weight maintainers (WMs; 0-10% weight regain) and weight regainers (WRs; 50-100% weight regain) by considering changes in body weight during the 2 phases. Anthropometric measurements, bioclinical variables, and scAT gene expression were studied in all individuals before and after the LCD. Energy intake was estimated by using 3-d dietary records. RESULTS: No differences in body weight and fasting insulin were observed between WMs and WRs at baseline or after the LCD period. The LCD resulted in significant decreases in body weight and in several plasma variables in both groups. WMs experienced a significant reduction in insulin secretion in response to an oral-glucose-tolerance test after the LCD; in contrast, no changes in insulin secretion were observed in WRs after the LCD. An ANOVA of scAT gene expression showed that genes regulating fatty acid metabolism, citric acid cycle, oxidative phosphorylation, and apoptosis were regulated differently by the LCD in WM and WR subjects. CONCLUSION: This study suggests that LCD-induced changes in insulin secretion and scAT gene expression may have the potential to predict successful short-term weight maintenanc

    Fatty acid composition of adipose tissue triglycerides after weight loss and weight maintenance: the DIOGENES study

    Get PDF
    Fatty acid composition of adipose tissue changes with weight loss. Palmitoleic acid as a possible marker of endogenous lipogenesis or its functions as a lipokine are under debate. Objective was to assess the predictive role of adipose triglycerides fatty acids in weight maintenance in participants of the DIOGENES dietary intervention study. After an 8-week low calorie diet (LCD) subjects with > 8 % weight loss were randomized to 5 ad libitum weight maintenance diets for 6 months: low protein (P)/low glycemic index (GI) (LP/LGI), low P/high GI (LP/HGI), high P/low GI (HP/LGI), high P/high GI (HP/HGI), and a control diet. Fatty acid composition in adipose tissue triglycerides was determined by gas chromatography in 195 subjects before the LCD (baseline), after LCD and weight maintenance. Weight change after the maintenance phase was positively correlated with baseline adipose palmitoleic (16:1n-7), myristoleic (14:1n-5) and trans-palmitoleic acid (16:1n-7t). Negative correlation was found with baseline oleic acid (18:1n-9). Lower baseline monounsaturated fatty acids (14:1n-5, 16:1n-7 and trans 16:1n-7) in adipose tissue triglycerides predict better weight maintenance. Lower oleic acid predicts lower weight decrease. These findings suggest a specific role of monounsaturated fatty acids in weight management and as weight change predictors

    Adipose tissue transcriptome reflects variations between subjects with continued weight loss and subjects regaining weight 6 mo after caloric restriction independent of energy intake

    Get PDF
    BACKGROUND: The mechanisms underlying body weight evolution after diet-induced weight loss are poorly understood. OBJECTIVE: We aimed to identify and characterize differences in the subcutaneous adipose tissue (SAT) transcriptome of subjects with different weight changes after energy restriction-induced weight loss during 6 mo on 4 different diets. DESIGN: After an 8-wk low-calorie diet (800 kcal/d), we randomly assigned weight-reduced obese subjects from 8 European countries to receive 4 diets that differed in protein and glycemic index content. In addition to anthropometric and plasma markers, SAT biopsies were taken at the beginning [clinical investigation day (CID) 2] and end (CID3) of the weight follow-up period. Microarray analysis was used to define SAT gene expression profiles at CID2 and CID3 in 22 women with continued weight loss (successful group) and in 22 women with weight regain (unsuccessful group) across the 4 dietary arms. RESULTS: Differences in SAT gene expression patterns between successful and unsuccessful groups were mainly due to weight variations rather than to differences in dietary macronutrient content. An analysis of covariance with total energy intake as a covariate identified 1338 differentially expressed genes. Cellular growth and proliferation, cell death, cellular function, and maintenance were the main biological processes represented in SAT from subjects who regained weight. Mitochondrial oxidative phosphorylation was the major pattern associated with continued weight loss. CONCLUSIONS: The ability to control body weight loss independent of energy intake or diet composition is reflected in the SAT transcriptome. Although cell proliferation may be detrimental, a greater mitochondrial energy gene expression is suggested as being beneficial for weight control

    Compositional analysis of the associations between 24-h movement behaviours and cardio-metabolic risk factors in overweight and obese adults with pre-diabetes from the PREVIEW study: cross-sectional baseline analysis

    Get PDF
    Background: Physical activity, sedentary time and sleep have been shown to be associated with cardio-metabolic health. However, these associations are typically studied in isolation or without accounting for the effect of all movement behaviours and the constrained nature of data that comprise a finite whole such as a 24 h day. The aim of this study was to examine the associations between the composition of daily movement behaviours (including sleep, sedentary time (ST), light intensity physical activity (LIPA) and moderate-to-vigorous activity (MVPA)) and cardio-metabolic health, in a cross-sectional analysis of adults with pre-diabetes. Further, we quantified the predicted differences following reallocation of time between behaviours. Methods: Accelerometers were used to quantify daily movement behaviours in 1462 adults from eight countries with a body mass index (BMI) ≥25 kg·m− 2 , impaired fasting glucose (IFG; 5.6–6.9 mmol·l − 1 ) and/or impaired glucose tolerance (IGT; 7.8–11.0 mmol•l − 1 2 h following oral glucose tolerance test, OGTT). Compositional isotemporal substitution was used to estimate the association of reallocating time between behaviours. Results: Replacing MVPA with any other behaviour around the mean composition was associated with a poorer cardio-metabolic risk profile. Conversely, when MVPA was increased, the relationships with cardiometabolic risk markers was favourable but with smaller predicted changes than when MVPA was replaced. Further, substituting ST with LIPA predicted improvements in cardio-metabolic risk markers, most notably insulin and HOMA-IR. Conclusions: This is the first study to use compositional analysis of the 24 h movement composition in adults with overweight/obesity and pre-diabetes. These findings build on previous literature that suggest replacing ST with LIPA may produce metabolic benefits that contribute to the prevention and management of type 2 diabetes. Furthermore, the asymmetry in the predicted change in risk markers following the reallocation of time to/from MVPA highlights the importance of maintaining existing levels of MVPA. Trial registration: ClinicalTrials.gov (NCT01777893)

    European association for the study of obesity position statement on the global COVID-19 pandemic

    Get PDF
    COVID-19, the infectious disease caused by the coronavirus SARS-CoV-2, was declared a pandemic by the World Health Organization on March 12, 2020. The European Association for the Study of Obesity (EASO), as a scientific and medical society dedicated to the promotion of health and well-being, is greatly concerned about this global health challenge and its significant impacts on individuals, families, communities, health systems, nations, and wider society

    Iridoid glucosides of the genus Veronica s.l. and their systematic significance

    No full text

    Antioxidant activity screening of extracts from Sideritis species (Labiatae) grown in Bulgaria

    No full text
    Plant samples from several species and populations of the genus Sideritis (Labiatae) grown in Bulgaria (S scardica, S syriaca and S montana) were extracted with different solvents. Their antioxidant activities were determined by the -carotene bleaching test (BCBT), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method and static headspace gas chromatography (HS-GC) and compared with the antioxidant activity of two reference compounds of different polarity, viz butylated hydroxytoluene (BHT) and rosmarinic acid. The pure reference compounds were applied in a ten-times lower concentration than the plant extracts. The highest antioxidant activity in the BCBT, close to that of BHT, was observed for the more apolar extracts. The inhibitory effect on -carotene bleaching of the polar extracts and rosmarinic acid was much lower than that of BHT. The inhibition of hexanal formation in bulk safflower oil by most of S syriaca and S scardica extracts was as effective as BHT but less so than rosmarinic acid. S montana extracts showed weak antioxidant or even pro-oxidant properties. Extracts from butanol and from ethyl acetate and the total methanol extracts from all Sideritis plants studied showed a strong radical scavenging activity against DPPH, close to that of rosmarinic acid. S montana extracts were, as a whole, slightly weaker radical inhibitors than the extracts from the other two species. The antioxidant activity of Sideritis extracts was attributed to the presence of flavonoid and phenylpropanoid glycoside

    Iridoid Glucosides from Phlomis tuberosa L. and Phlomis herba-ventis L.

    No full text
    Abstract A new iridoid glucoside, 5-desoxysesamoside, was isolated from Phlomis tuberosa L. (Lamiaceae) together with three known iridoid glucosides sesamoside, shanziside methyl ester and lamalbid. Lamiide was found in P. herba-ventis ssp. pungens in high concentrations.</jats:p
    corecore