185 research outputs found

    99mTc-sestamibi is a substrate for P-glycoprotein and the multidrug resistance-associated protein.

    Get PDF
    99mTc-sestamibi (99mTc-MIBI) is a substrate for the P-glycoprotein (P-gp) pump but it is not known whether it is a substrate for the multidrug resistance-associated protein (MRP) pump. Therefore, 99mTc-MIBI was evaluated in the GLC4 cell line and its doxorubicin-resistant MRP-, but not P-gp-, overexpressing GLC4/ADR sublines as well as in the S1 cell line and its MRP-transfected subline S1-MRP. 99mTc-MIBI concentration decreased in the GLC4/ADR sublines with increasing MRP overexpression and was lower in S1-MRP than in S1. 99mTc-MIBI plus vincristine increased 99mTc-MIBI concentration in GLC4 lines compared with 99mTc-MIBI alone. 99mTc-MIBI efflux raised with increasing MRP expression in the GLC4 lines. Glutathione depletion elevated 99mTc-MIBI concentration in GLC4/ADR150x. Cross resistance for 99Tc-MIBI, used to test cytotoxicity of the Tc compound, was observed in GLC4/ADR150x vs GLC4. 99Tc-MIBI induced a synergistic effect on vincristine cytotoxicity in GLC4/ADR150x. These results show that 99mTc-MIBI is involved in MRP-mediated efflux. The fact that 99mTc-MIBI efflux is influenced by MDR1 and MRP expression must be taken into account when this gamma-rays-emitting complex is tested for tumour efflux measurements

    Atherosclerotic plaque destabilization in Mice: A comparative study

    Get PDF
    Atherosclerosis-Associated diseases are the main cause ofmortality and morbidity in western societies. The progression of atherosclerosis is a dynamic process evolving from early to advanced lesions thatmay become rupture-prone vulnerable plaques. Acute coronary syndromes are the clinical manifestation of life-Threatening thrombotic events associated with high-risk vulnerable plaques. Hyperlipidemic mouse models have been extensively used in studying the mechanisms controlling initiation and progression of atherosclerosis. However, the understanding of mechanisms leading to atherosclerotic plaque destabilization has been hampered by the lack of proper animalmodelsmimicking this process. Although various mouse models generate atherosclerotic plaques with histological features of human advanced lesions, a consensus model to study atherosclerotic plaque destabilization is still lacking. Hence, we studied the degree and features of plaque vulnerability in different mouse models of atherosclerotic plaque destabilization and find that the model based on the placement of a shear stress modifier in combination with hypercholesterolemia represent with high incidence the most human like lesions compared to the other models

    Successful Use of [14C]Paracetamol Microdosing to Elucidate Developmental Changes in Drug Metabolism

    Get PDF
    Background: We previously showed the practical and ethical feasibility of using [14C]-microdosing for pharmacokinetic studies in children. We now aimed to show that this approach can be used to elucidate developmental changes in drug metabolism, more specifically, glucuronidation and sulfation, using [14C]paracetamol (AAP). Methods: Infants admitted to the intensive care unit received a single oral [14C]AAP microdose while receiving intravenous therapeutic AAP every 6 h. [14C]AAP pharmacokinetic parameters were estimated. [14C]AAP and metabolit

    Pediatric Microdose Study of [14C]Paracetamol to Study Drug Metabolism Using Accelerated Mass Spectrometry: Proof of Concept

    Get PDF
    Results: Ten infants (aged 0.1–83.1 months) were included; one was excluded as he vomited shortly after administration. In nine patients, [14C]AAP and metabolites in blood samples were detectable at expected concentrations: median (range) maximum concentration (Cmax) [14C]AAP 1.68 (0.75–4.76) ng/L, [14C]AAP-Glu 0.88 (0.34–1.55) ng/L, and [14C]AAP-4Sul 0.81 (0.29–2.10) ng/L. Dose-normalized oral [14C]AAP Cmax approached median intravenous average concentrations (Cav): 8.41 mg/L (3.75–23.78 mg/L) and 8.87 mg/L (3.45–12.9 mg/L), respectively.Conclusions: We demonstrate the feasibility of using a [14C]labeled microdose to study AAP pharmacokinetics, including metabolite disposition, in young children.Background: Pediatric drug development is hampered by practical, ethical, and scientific challenges. Microdosing is a promising new method to obtain pharmacokinetic data in children with minimal burden and minimal risk. The use of a labeled oral microdose offers the added benefit to study intestinal and hepatic drug disposition in children already receiving an intravenous therapeutic drug dose for clinical reasons.Methods: In an open-label microdose pharmacokinetic pilot study, infants (0–6 years of age) received a single oral [14C]AAP microdose (3.3 ng/kg, 60 Bq/kg) in addition to intravenous therapeutic doses of AAP (15 mg/kg intravenous every 6 h). Blood samples were taken from an indwelling catheter. AAP blood concentrations were measured by liquid chromatography–tandem mass spectrometry (LC-MS/MS) and [14C]AAP and metabolites ([14C]AAP-Glu and [14C]AAP-4Sul) were measured by accelerator mass spectrometry.Objective: The objective of this study was to present pilot data of an oral [14C]paracetamol [acetaminophen (AAP)] microdosing study as proof of concept to study developmental pharmacokinetics in children

    The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?

    Get PDF
    The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    Interleukin and Growth Factor Levels in Subretinal Fluid in Rhegmatogenous Retinal Detachment: A Case-Control Study

    Get PDF
    BACKGROUND: Rhegmatogenous retinal detachment (RRD) is a major cause of visual loss in developed countries. Proliferative vitreoretinopathy (PVR), an eye-sight threatening complication of RRD surgery, resembles a wound-healing process with inflammation, scar tissue formation, and membrane contraction. This study was performed to determine the possible involvement of a wide range of cytokines in the future development of PVR, and to identify predictors of PVR and visual outcome. METHODOLOGY: A multiplex immunoassay was used for the simultaneous detection of 29 different cytokines in subretinal fluid samples from patients with primary RRD. Of 306 samples that were collected and stored in our BioBank between 2001 and 2008, 21 samples from patients who developed postoperative PVR were compared with 54 age-, sex-, and storage-time-matched RRD control patients who had an uncomplicated postoperative course during the overall follow-up period. FINDINGS: Levels of IL-1α, IL-2, IL-3, IL-6, VEGF, and ICAM-1 were significantly higher (P<0.05) in patients who developed postoperative PVR after reattachment surgery than in patients with an uncomplicated postoperative course, whereas levels of IL-1β, IL-4, IL-5, IL-7, IL-9, IL-10, IL-11, IL-12p70, IL-13, IL-15, IL-17, IL-18, IL-21, IL-22, IL-23, IL-25, IL-33, TNF-α, IFN-γ, IGF-1, bFGF, HGF, and NGF were not (P>0.05). Multivariate logistic regression analysis revealed that IL-3 (P = 0.001), IL-6 (P = 0.047), ICAM-1 (P = 0.010), and preoperative visual acuity (P = 0.026) were independent predictors of postoperative PVR. Linear regression analysis showed that ICAM-1 (P = 0.005) and preoperative logMAR visual acuity (P = 0.001) were predictive of final visual outcome after primary RRD repair. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that after RRD onset an exaggerated response of certain cytokines may predispose to PVR. Sampling at a time close to the onset of primary RRD may thus provide clues as to which biological events may initiate the development of PVR and, most importantly, may provide a means for therapeutic control

    (R)-[11C]Verapamil PET studies to assess changes in P-glycoprotein expression and functionality in rat blood-brain barrier after exposure to kainate-induced status epilepticus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased functionality of efflux transporters at the blood-brain barrier may contribute to decreased drug concentrations at the target site in CNS diseases like epilepsy. In the rat, pharmacoresistant epilepsy can be mimicked by inducing status epilepticus by intraperitoneal injection of kainate, which leads to development of spontaneous seizures after 3 weeks to 3 months. The aim of this study was to investigate potential changes in P-glycoprotein (P-gp) expression and functionality at an early stage after induction of status epilepticus by kainate.</p> <p>Methods</p> <p><it>(R)</it>-[<sup>11</sup>C]verapamil, which is currently the most frequently used positron emission tomography (PET) ligand for determining P-gp functionality at the blood-brain barrier, was used in kainate and saline (control) treated rats, at 7 days after treatment. To investigate the effect of P-gp on <it>(R)</it>-[<sup>11</sup>C]verapamil brain distribution, both groups were studied without or with co-administration of the P-gp inhibitor tariquidar. P-gp expression was determined using immunohistochemistry in post mortem brains. <it>(R)</it>-[<sup>11</sup>C]verapamil kinetics were analyzed with approaches common in PET research (Logan analysis, and compartmental modelling of individual profiles) as well as by population mixed effects modelling (NONMEM).</p> <p>Results</p> <p>All data analysis approaches indicated only modest differences in brain distribution of <it>(R)</it>-[<sup>11</sup>C]verapamil between saline and kainate treated rats, while tariquidar treatment in both groups resulted in a more than 10-fold increase. NONMEM provided most precise parameter estimates. P-gp expression was found to be similar for kainate and saline treated rats.</p> <p>Conclusions</p> <p>P-gp expression and functionality does not seem to change at early stage after induction of anticipated pharmacoresistant epilepsy by kainate.</p

    On The Rate and Extent of Drug Delivery to the Brain

    Get PDF
    To define and differentiate relevant aspects of blood–brain barrier transport and distribution in order to aid research methodology in brain drug delivery. Pharmacokinetic parameters relative to the rate and extent of brain drug delivery are described and illustrated with relevant data, with special emphasis on the unbound, pharmacologically active drug molecule. Drug delivery to the brain can be comprehensively described using three parameters: Kp,uu (concentration ratio of unbound drug in brain to blood), CLin (permeability clearance into the brain), and Vu,brain (intra-brain distribution). The permeability of the blood–brain barrier is less relevant to drug action within the CNS than the extent of drug delivery, as most drugs are administered on a continuous (repeated) basis. Kp,uu can differ between CNS-active drugs by a factor of up to 150-fold. This range is much smaller than that for log BB ratios (Kp), which can differ by up to at least 2,000-fold, or for BBB permeabilities, which span an even larger range (up to at least 20,000-fold difference). Methods that measure the three parameters Kp,uu, CLin, and Vu,brain can give clinically valuable estimates of brain drug delivery in early drug discovery programmes

    ATP-binding cassette (ABC) transporters in normal and pathological lung

    Get PDF
    ATP-binding cassette (ABC) transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) are highly expressed in bronchial epithelium. This review aims to give new insights in the possible functions of ABC molecules in the lung in view of their expression in different cell types. Furthermore, their role in protection against noxious compounds, e.g. air pollutants and cigarette smoke components, will be discussed as well as the (mal)function in normal and pathological lung. Several pulmonary drugs are substrates for ABC transporters and therefore, the delivery of these drugs to the site of action may be highly dependent on the presence and activity of many ABC transporters in several cell types. Three ABC transporters are known to play an important role in lung functioning. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene can cause cystic fibrosis, and mutations in ABCA1 and ABCA3 are responsible for respectively Tangier disease and fatal surfactant deficiency. The role of altered function of ABC transporters in highly prevalent pulmonary diseases such as asthma or chronic obstructive pulmonary disease (COPD) have hardly been investigated so far. We especially focused on polymorphisms, knock-out mice models and in vitro results of pulmonary research. Insight in the function of ABC transporters in the lung may open new ways to facilitate treatment of lung diseases
    corecore