17 research outputs found

    Microfossils from the late Mesoproterozoic - early Neoproterozoic Atar/EI Mreiti Group, Taoudeni Basin, Mauritania, northwestern Africa

    Get PDF
    The well-preserved Meso-Neoproterozoic shallow marine succession of the Atar/EI Mreiti Group, in the Taoudeni Basin, Mauritania, offers a unique opportunity to investigate the mid-Proterozoic eukaryotic record in Western Africa. Previous investigations focused on stromatolites, biomarkers, chemostratigraphy and palaeoredox conditions. However, only a very modest diversity of organic-walled microfossils (acritarchs) has been documented. Here, we present a new, exquisitely well-preserved and morphologically diverse assemblage of organic-walled microfossils from three cores drilled through the Atar/El Mreiti Group. A total of 48 distinct entities including 11 unambiguous eukaryotes (ornamented and process-bearing acritarchs), and 37 taxonomically unresolved taxa (including 9 possible eukaryotes, 6 probable prokaryotes, and 22 other prokaryotic or eukaryotic taxa) were observed. Black shales preserve locally abundant fragments of organic-rich laminae interpreted as benthic microbial mats. We also document one of the oldest records of Leiosphaeridia kulgunica, a species showing a circular opening interpreted as a sophisticated circular excystment structure (a pylome), and one of the oldest records of Trachyhystrichosphaera aimika and T. botula, two distinctive process-bearing acritarchs present in well dated 1.1 Ga formations at the base of the succession. The general assemblage composition and the presence of three possible index fossils (A. tetragonala, S. segmentata and T. aimika) support a late Mesoproterozoic to early Neoproterozoic (Tonian) age for the Atar/El Mreiti Group, consistent with published lithostratigraphy, chemostratigraphy and geochronology. This study provides the first evidence for a moderately diverse eukaryotic life, at least 1.1 billion years ago in Western Africa. Comparison with coeval worldwide assemblages indicates that a broadly similar microbial biosphere inhabited (generally redox-stratified) oceans, placing better time constraints on early eukaryote palaeogeography and biostratigraphy

    Black shale deposition and early diagenetic dolomite cementation during Oceanic Anoxic Event 1: The mid-Cretaceous Maracaibo Platform, northwestern South America

    Get PDF
    Thin laterally continuous organic-rich dolomitic marlstones were deposited in the extended Late Aptian - Early Albian epicontinental sea of northwestern South America. These intervals are the proximal equivalents of thick hemipelagic black shale-ammonitic floatstone couplets, deposited in the distally stepped, differentially subsiding part of the Maracaibo Platform. The marlstones reflect the dynamic conditions resulting from orbital forcing mechanisms and can be genetically related to (1) minor sea-level changes, (2) proximal turnovers in marine productivity, and (3) sudden climate shifts affecting mid-Cretaceous shoaling upward, shallow marine, carbonate cyclicity. Therefore, the marlstones may well be linked to the multiple environmental perturbations collectively referred to as Oceanic Anoxic Event 1. The interstitial euhedral dolomite has a medium crystallinity, and exhibits unusual textural relations with framboidal pyrite and gypsum. The authigenic mineral assemblage also includes quartz, Ca-F apatite, and barite, which together with the chemical signals of dolomite, point to an unsteady climate regime. Bulk-rock biomarker parameters, rare earth element geochemistry, and iron speciation data point to widespread photic zone anoxia and transient shallow marine euxinia by the time of deposition, with climatic instability driving the delivery of oxidized detritus from the hinterlands. These conditions led to a schizohaline redox stratified environment favorable to dolomite precipitation. In such a depositional setting, the bio-utilization of Fe, Mn, and sulfur for organic matter respiration sustained elevated pore-water alkalinity and pH, and allowed for the pre-compactional growth of interstitial dolomite

    Microbial assemblage and palaeoenvironmental reconstruction of the 1.38 Ga Velkerri Formation, McArthur Basin, northern Australia

    Get PDF
    The ca. 1.38 billion years (Ga) old Roper Group of the McArthur Basin, northern Australia, is one of the most extensive Proterozoic hydrocarbon-bearing units. Organic-rich black siltstones from the Velkerri Formation were deposited in a deep-water sequence and were analysed to determine their organic geochemical (biomarker) signatures, which were used to interpret the microbial diversity and palaeoenvironment of the Roper Seaway. The indigenous hydrocarbon biomarker assemblages describe a water column dominated by bacteria with large-scale heterotrophic reworking of the organic matter in the water column or bottom sediment. Possible evidence for microbial reworking includes a large unresolved complex mixture (UCM), high ratios of mid-chained and terminally branched monomethyl alkanes relative to n-alkanes-features characteristic of indigenous Proterozoic bitumen. Steranes, biomarkers for single-celled and multicellular eukaryotes, were below detection limits in all extracts analysed, despite eukaryotic microfossils having been previously identified in the Roper Group, albeit largely in organically lean shallower water facies. These data suggest that eukaryotes, while present in the Roper Seaway, were ecologically restricted and contributed little to export production. The 2,3,4- and 2,3,6-trimethyl aryl isoprenoids (TMAI) were absent or in very low concentration in the Velkerri Formation. The low abundance is primary and not caused by thermal destruction. The combination of increased dibenzothiophene in the Amungee Member of the Velkerri Formation and trace metal redox geochemistry suggests that degradation of carotenoids occurred during intermittent oxygen exposure at the sediment-water interface and/or the water column was rarely euxinic in the photic zone and likely only transiently euxinic at depth. A comparison of this work with recently published biomarker and trace elemental studies from other mid-Proterozoic basins demonstrates that microbial environments, water column geochemistry and basin redox were heterogeneous.Amber J. M. Jarrett, Grant M. Cox, Jochen J. Brocks, Emmanuelle Grosjean Chris J. Boreham, Dianne S. Edward

    1.1-billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers

    No full text
    The average cell size of marine phytoplankton is critical for the flow of energy and nutrients from the base of the food web to higher trophic levels. Thus, the evolutionary succession of primary producers through Earth's history is important for our understanding of the radiation of modern protists similar to 800 million years ago and the emergence of eumetazoan animals similar to 200 million years later. Currently, it is difficult to establish connections between primary production and the proliferation of large and complex organisms because the mid-Proterozoic (similar to 1,800-800 million years ago) rock record is nearly devoid of recognizable phytoplankton fossils. We report the discovery of intact porphyrins, the molecular fossils of chlorophylls, from 1,100-million-year-old marine black shales of the Taoudeni Basin (Mauritania), 600 million years older than previous findings. The porphyrin nitrogen isotopes (delta N-15(por) = 5.6-10.2 parts per thousand) are heavier than in younger sedimentary sequences, and the isotopic offset between sedimentary bulk nitrogen and porphyrins (epsilon(por) = -5.1 to -0.5 parts per thousand) points to cyanobacteria as dominant primary producers. Based on fossil carotenoids, anoxygenic green (Chlorobiacea) and purple sulfur bacteria (Chromatiaceae) also contributed to photosynthate. The low epsilon(por) values, in combination with a lack of diagnostic eukaryotic steranes in the time interval of 1,600-1,000 million years ago, demonstrate that algae played an insignificant role in mid-Proterozoic oceans. The paucity of algae and the small cell size of bacterial phytoplankton may have curtailed the flow of energy to higher trophic levels, potentially contributing to a diminished evolutionary pace toward complex eukaryotic ecosystems and large and active organisms

    Constraining the thermal history of the North American Midcontinent Rift System using carbon clumped isotopes and organic thermal maturity indices

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148577/1/Gallagher_et_al_2017_Precambrian_Research-thermal_history_of_the_MCR.pd

    1.1-billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers

    No full text
    The average cell size of marine phytoplankton is critical for the flow of energy and nutrients from the base of the food web to higher trophic levels. Thus, the evolutionary succession of primary producers through Earth’s history is important for our understanding of the radiation of modern protists ∼800 million years ago and the emergence of eumetazoan animals ∼200 million years later. Currently, it is difficult to establish connections between primary production and the proliferation of large and complex organisms because the mid-Proterozoic (∼1,800–800 million years ago) rock record is nearly devoid of recognizable phytoplankton fossils. We report the discovery of intact porphyrins, the molecular fossils of chlorophylls, from 1,100-million-year-old marine black shales of the Taoudeni Basin (Mauritania), 600 million years older than previous findings. The porphyrin nitrogen isotopes (δ15Npor = 5.6–10.2) are heavier than in younger sedimentary sequences, and the isotopic offset between sedimentary bulk nitrogen and porphyrins (epor = −5.1 to −0.5) points to cyanobacteria as dominant primary producers. Based on fossil carotenoids, anoxygenic green (Chlorobiacea) and purple sulfur bacteria (Chromatiaceae) also contributed to photosynthate. The low epor values, in combination with a lack of diagnostic eukaryotic steranes in the time interval of 1,600–1,000 million years ago, demonstrate that algae played an insignificant role in mid-Proterozoic oceans. The paucity of algae and the small cell size of bacterial phytoplankton may have curtailed the flow of energy to higher trophic levels, potentially contributing to a diminished evolutionary pace toward complex eukaryotic ecosystems and large and active organisms.This work was supported in part by Australian Research Council Grants DP1095247 and DP160100607 (to J.J.B.) and by Belgian Science Policy Interuniversity Attraction Pole “PLANET TOPERS” and Euro- pean Research Council Starting Grant ELiTE FP7/308074 (to E.J.J. and J.B.). A portion of the work was performed at the National High Magnetic Field Laboratory at Florida State University, which is supported by the National Science Foundation through Grant DMR 11-57490 and the State of Florida. C.J.B. publishes with the permission of the chief executive officer of Geoscience Australia
    corecore