425 research outputs found

    Atoms as nonlinear mixers for detection of quantum correlations at ultrahigh frequencies

    Get PDF
    Measurements of quantum correlations are reported for a frequency difference of 25 THz between the signal and idler output fields generated by a subthreshold nondegenerate optical parametric oscillator. By simultaneously exciting a two-photon transition in atomic Cs by a combination of signal, idler, and "references oscillator" fields, we record modulation of the excited-state population due to quantum interference between two alternative excitation pathways. The observed phase-sensitive modulation is proportional to the correlation function〈EsEi〉for the quantized signal and idler fields

    Two-photon spectroscopy of the 6S_(1/2) → 6D_(5/2) transition of trapped atomic cesium

    Get PDF
    Two-photon spectroscopy of atomic cesium confined and cooled in a magneto-optical trap is reported. The hyperfine structure of the 6D_(5/2) state is determined with 1% accuracy. New capabilities for studying ac Stark shifts and kinetic transport for cold atoms are suggested

    Frequency metrology by use of quantum interference

    Get PDF
    Quantum interference in the rate of two-photon excitation of the 6S1/2 → 6P3/2 → 6D5/2 transition in atomic cesium is exploited to demonstrate phase-sensitive frequency demodulation for an optical interval of 612.5 THz. By thus using atoms as ultrafast nonlinear mixing elements, we suggest and analyze a new avenue for absolute comparisons of a dense set of frequencies over the range of 200–2000 nm

    Quantum interference in two-photon excitation with squeezed and coherent fields

    Get PDF
    Two-photon excitation of a three-level atom in a ladder configuration (1-->2-->3) by simultaneous illumination with fields in squeezed vacuum and coherent states results in quantum interference for the excitation process. The particular configuration considered here is one for which the signal and idler output fields of a subthreshold nondegenerate optical parametric oscillator are in resonance with the two-stepwise dipole atomic transitions (1-->2,2-->3), while a "reference oscillator" field is in two-photon resonance with the quadrupole transition (1-->3). In an extension of the work of Ficek and Drummond [Phys. Rev. A 43, 6247 (1991)], a theoretical formulation based on the full quantum master equation for the problem is presented. The combined effects of quantum interference and the nonclassical character of the squeezed state are investigated, and offer the potential for a new detection strategy for quantum fluctuations of the electromagnetic field with ultrahigh frequencies (10's-100's THz). Based on the theory developed, we analyze quantum interference in excitation in several special cases relevant to experimental realizations, including the effects of a small focusing angle of the squeezing onto the atoms, and unusual population inversions. Special emphasis is given to identifying intrinsically quantum optical field effects versus classical field effects. Procedures that could distinguish between the two (i.e., classical and nonclassical) are suggested

    Cavity QED with high-Q whispering gallery modes

    Get PDF
    We report measurements of cavity-QED effects for the radiative coupling of atoms in a dilute vapor to the external evanescent field of a whispering-gallery mode (WGM) in a fused silica microsphere. The high Q (5 x 10^(7)), small mode volume (10^(-8) cm^(3)), and unusual symmetry of the microcavity evanescent field enable velocity-selective interactions between fields with photon number of order unity in the WGM and (N) over bar(T) similar to 1 atoms in the surrounding vapor

    Nonlinear interactions with an ultrahigh flux of broadband entangled photons

    Full text link
    We experimentally demonstrate sum-frequency generation (SFG) with entangled photon-pairs, generating as many as 40,000 SFG photons per second, visible even to the naked eye. The nonclassical nature of the interaction is exhibited by a linear intensity-dependence of the nonlinear process. The key element in our scheme is the generation of an ultrahigh flux of entangled photons while maintaining their nonclassical properties. This is made possible by generating the down-converted photons as broadband as possible, orders of magnitude wider than the pump. This approach is readily applicable for other nonlinear interactions, and may be applicable for various quantum-measurement tasks.Comment: 4 pages, 2 figures, Accepted to Phys. Rev. Let

    Teleportation of continuous quantum variables

    Get PDF
    A particularly startling discovery by Bennett et al. is the possibility for teleportation of a quantum state, whereby an unknown state of a spin-1/2 particle is transported by Alice from a sending station to Bob at a receiving terminal by conveying 2 bits of classical information. Beyond the context of dichotomic variables, Vaidman has analyzed teleportation of the wave function of a one-dimensional particle in a beautiful variation of the original EPR paradox. Here we extend Vaidman's analysis to incorporate finite (nonsingular) degrees of correlation among the relevant particles

    Quantitative autism symptom patterns recapitulate differential mechanisms of genetic transmission in single and multiple incidence families

    Get PDF
    Abstract Background Previous studies have demonstrated aggregation of autistic traits in undiagnosed family members of children with autism spectrum disorder (ASD), which has significant implications for ASD risk in their offspring. This study capitalizes upon a large, quantitatively characterized clinical-epidemiologic family sample to establish the extent to which family transmission pattern and sex modulate ASD trait aggregation. Methods Data were analyzed from 5515 siblings (2657 non-ASD and 2858 ASD) included in the Interactive Autism Network. Autism symptom levels were measured using the Social Responsiveness Scale (SRS) and by computing Diagnostic and Statistical Manual of Mental Disorders—Fifth Edition (DSM-5) symptom scores based on items from the SRS and Social Communication Questionnaire. Generalized estimating equation models evaluated the influence of family incidence types (single versus multiple incidence families; male-only ASD-affected families versus families with female ASD-affected children), diagnostic group (non-ASD children with and without a history of language delay with autistic speech and ASD-affected children), and sibling sex on ASD symptom levels. Results Non-ASD children manifested elevated ASD symptom burden when they were members of multiple incidence families—this effect was accentuated for male children in female ASD-containing families—or when they had a history of language delay with autistic qualities of speech. In this sample, ASD-affected children from multiple incidence families had lower symptom levels than their counterparts in single incidence families. Recurrence risk for ASD was higher for children from female ASD-containing families than for children from male-only families. Conclusions Sex and patterns of family transmission modulate the risk of autism symptom burden in undiagnosed siblings of ASD-affected children. Identification of these symptoms/traits and their molecular genetic causes may have significant implications for genetic counseling and for understanding inherited liabilities that confer risk for ASD in successive generations. Autism symptom elevations were more dramatic in non-ASD children from multiple incidence families and those with a history of language delay and autistic qualities of speech, identifying sub-groups at substantially greater transmission risk. Higher symptom burden and greater recurrence in children from female ASD-containing families indicate that familial aggregation patterns are further qualified by sex-specific thresholds, supportive of the notion that females require a higher burden of deleterious liability to cross into categorical ASD diagnosis

    Biofilms associated with ship submerged surfaces: implications for ship biofouling management and the environment

    Get PDF
    Biofouling (including initial microbial biofilms) of submerged ship surfaces can directly impact vessel operations, leading to increases in fuel usage, greenhouse gas emissions, and the likelihood of non-indigenous species (NIS) transfer and impacts. Considerations of attainable and consistent biosecurity goals are paramount to the success of the widespread adoption of biofouling management policy. Proactive in-water cleaning (IWC) of biofilms from submerged ship surfaces may provide a viable option from a biosecurity and ship operations standpoint, however these benefits need to be balanced against other environmental costs, including the potential for increased biosecurity risks associated with the elevated release of diverse microbes from ship surfaces
    • …
    corecore