278 research outputs found

    Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment

    Get PDF
    Wall adsorption is a common problem in microfluidic devices, particularly when proteins are used. Here we show how superhydrophobic surfaces can be used to reduce protein adsorption and to promote desorption. Hydrophobic surfaces, both smooth and having high surface roughness of varying length scales (to generate superhydrophobicity), were incubated in protein solution. The samples were then exposed to flow shear in a device designed to simulate a microfluidic environment. Results show that a similar amount of protein adsorbed onto smooth and nanometer-scale rough surfaces, although a greater amount was found to adsorb onto superhydrophobic surfaces with micrometer scale roughness. Exposure to flow shear removed a considerably larger proportion of adsorbed protein from the superhydrophobic surfaces than from the smooth ones, with almost all of the protein being removed from some nanoscale surfaces. This type of surface may therefore be useful in environments, such as microfluidics, where protein sticking is a problem and fluid flow is present. Possible mechanisms that explain the behaviour are discussed, including decreased contact between protein and surface and greater shear stress due to interfacial slip between the superhydrophobic surface and the liquid

    Polymer model with Epigenetic Recoloring Reveals a Pathway for the <i>de novo</i> Establishment and 3D Organization of Chromatin Domains

    Get PDF
    One of the most important problems in development is how epigenetic domains can be first established, and then maintained, within cells. To address this question, we propose a framework which couples 3D chromatin folding dynamics, to a "recolouring" process modelling the writing of epigenetic marks. Because many intra-chromatin interactions are mediated by bridging proteins, we consider a "two-state" model with self-attractive interactions between two epigenetic marks which are alike (either active or inactive). This model displays a first-order-like transition between a swollen, epigenetically disordered, phase, and a compact, epigenetically coherent, chromatin globule. If the self-attraction strength exceeds a threshold, the chromatin dynamics becomes glassy, and the corresponding interaction network freezes. By modifying the epigenetic read-write process according to more biologically-inspired assumptions, our polymer model with recolouring recapitulates the ultrasensitive response of epigenetic switches to perturbations, and accounts for multi-domain conformations, strikingly similar to the topologically-associating-domains observed in eukaryotic chromosomes.Comment: Accepted version. To appear in Physical Review X. Combined main text + SI; Suppl. Movies at http://www2.ph.ed.ac.uk/~dmichiel

    Mars Science Laboratory relative humidity observations : Initial results

    Get PDF
    The authors would like to express their gratitude to the MSL and REMS instrument teams in making this wonderful Mars mission come true. Ari‐Matti Harri and Hannu Savijarvi are thankful for the Finnish Academy grants 132825 and 131723.Peer reviewedPublisher PD

    Zigzag line defects and manipulation of colloids in a nematic liquid crystal in microwrinkle grooves

    Get PDF
    Spatially confined liquid crystals exhibit non-uniform alignment, often accompanied by self-organised topological defects of non-trivial shape in response to imposed boundary conditions and geometry. Here we show that a nematic liquid crystal, when confined in a sinusoidal microwrinkle groove, exhibits a new periodic arrangement of twist deformations and a zigzag line defect. This periodic ordering results from the inherent liquid crystal elastic anisotropy and the antagonistic boundary conditions at the flat liquid crystal–air and the curved liquid crystal–groove interfaces. The periodic structure can be tuned by controlling the groove geometry and the molecular chirality, which demonstrates the importance of boundary conditions and introduced asymmetry for the engineering of topological defects. Moreover, the kinks in the zigzag defects can trap small particles, which may afford a new method for manipulation of colloids. Our system, which uses easily fabricated microwrinkle grooves, provides a new microfabrication method based on the arrangement of controllable defects

    Wrinkling Labyrinth Patterns on Elastomeric Janus Particles

    Get PDF
    We describe a novel, low-cost and low-tech method for the fabrication of elastomeric Janus particles with diameters ranging from micrometers to millimeters. This consists of UV-irradiating soft urethane/urea elastomer spheres, which are then extracted in toluene and dried. The spheres are thus composed of a single material: no coating or film deposition steps are required. Furthermore, the whole procedure is carried out at ambient temperature and pressure. Long, labyrinthine corrugations ("wrinkles") appear on the irradiated portions of the particles' surfaces, the spatial periodicity of which can be controlled by varying the sizes of particles. The asymmetric morphology of the resulting Janus particles has been confirmed by scanning electron microscopy, atomic force microscopy, and optical microscopy. We have also established that the spheres behave elastically by performing bouncing tests with dried and swollen spheres. Results can be interpreted by assuming that each sphere consists of a thin, stiff surface layer ("skin") lying atop a thicker, softer substrate ("bulk"). The skin's higher stiffness is hypothesized to result from the more extensive cross-linking of the polymer chains located near the surface by the UV radiation. Textures then arise from competition between the effects of bending the skin and compressing the bulk, as the solvent evaporates and the sphere shrinks

    Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings

    Get PDF
    corecore