757 research outputs found

    Interplane charge dynamics in a valence-bond dynamical mean-field theory of cuprate superconductors

    Full text link
    We present calculations of the interplane charge dynamics in the normal state of cuprate superconductors within the valence-bond dynamical mean-field theory. We show that by varying the hole doping, the c-axis optical conductivity and resistivity dramatically change character, going from metallic-like at large doping to insulating-like at low-doping. We establish a clear connection between the behavior of the c-axis optical and transport properties and the destruction of coherent quasiparticles as the pseudogap opens in the antinodal region of the Brillouin zone at low doping. We show that our results are in good agreement with spectroscopic and optical experiments.Comment: 5 pages, 3 figure

    Asymptotically self-similar propagation of the spherical ionization waves

    Full text link
    It is shown that a new type of the self-similar spherical ionization waves may exist in gases. All spatial scales and the propagation velocity of such waves increase exponentially in time. Conditions for existence of these waves are established, their structure is described and approximate analytical relationships between the principal parameters are obtained. It is notable that spherical ionization waves can serve as the simplest, but structurally complete and physically transparent model of streamer in homogeneous electric field.Comment: Corrected typos, the more precise formulas are obtaine

    Twisted speckle entities inside wavefront reversal mirrors

    Full text link
    The previously unknown property of the optical speckle pattern reported. The interference of a speckle with an oppositely moving phase-conjugated speckle wave produces a randomly distributed ensemble of a twisted entities (ropes) surrounding optical vortex lines. These entities appear in a wide range of randomly chosen speckle parameters inside the phase-conjugating mirrors regardless to an internal physical mechanism of the wavefront reversal. These numerically generated interference patterns are relevant to a Brillouin PC\bf PC-mirrors and to a four-wave mixing PC\bf PC-mirrors based upon laser trapped ultracold atomic cloud.Comment: 4 pages,3 figures, Accepted to Physical Review

    Extracting the electron--boson spectral function α2\alpha^2F(ω\omega) from infrared and photoemission data using inverse theory

    Full text link
    We present a new method of extracting electron-boson spectral function α2\alpha^2F(ω\omega) from infrared and photoemission data. This procedure is based on inverse theory and will be shown to be superior to previous techniques. Numerical implementation of the algorithm is presented in detail and then used to accurately determine the doping and temperature dependence of the spectral function in several families of high-Tc_c superconductors. Principal limitations of extracting α2\alpha^2F(ω\omega) from experimental data will be pointed out. We directly compare the IR and ARPES α2\alpha^2F(ω\omega) and discuss the resonance structure in the spectra in terms of existing theoretical models

    Electrodynamics of the Nodal Metal in Weakly Doped High-TcT_{c} Cuprates

    Full text link
    We report on the detailed analysis of the infrared (IR) conductivity of two prototypical high-TcT_{c} systems YBa2_{2}Cu3_{3}Oy_{y} and La2x_{2-x}Sr%_{x}CuO4_{4} throughout the complex phase diagram of these compounds. Our focus in this work is to thoroughly document the electromagnetic response of the nodal metal state which is initiated with only few holes doped in parent antiferromagnetic systems and extends up to the pseudogap boundary in the phase diagram. The key signature of the nodal metal is the two-component conductivity: the Drude mode at low energies followed by a resonance in mid-IR. The Drude component can be attributed to the response of coherent quasiparticles residing on the Fermi arcs detected in photoemission experiments. The microscopic origin of the mid-IR band is yet to be understood. A combination of transport and IR data uncovers fingerprints of the Fermi liquid behavior in the response of the nodal metal. The comprehensive nature of the data sets presented in this work allows us to critically re-evaluate common approaches to the interpretation of the optical data. Specifically we re-examine the role of magnetic excitations in generating electronic self energy effects through the analysis of the IR data in high magnetic field.Comment: 14 pages, 11 figure

    Stimulated emission of radiation using spin-population inversion in metals: a spin-laser

    Full text link
    Arrays of 10 nm-diameter point contacts of exchange-coupled spin-majority/spin-minority ferromagnetic metals, integrated into infrared-terahertz range photon resonators, are fabricated and measured electrically and optically. Giant, threshold-type electronic excitations under high-current pumping of the devices are observed as abrupt but reversible steps in device resistance, in many cases in access of 100%, which correlate with optical emission from the devices. The results are interpreted as due to stimulated spin-flip electron-photon relaxation in the system.Comment: 5 page

    Sum rules and electrodynamics of high-Tc cuprates in the pseudogap state

    Full text link
    We explore connections between the electronic density of states (DOS) in a conducting system and the frequency dependence of the scattering rate 1/τ(ω)1/\tau(\omega) inferred from infrared spectroscopy. We show that changes in the DOS upon the development of energy gaps can be reliably tracked through the examination of the 1/τ(ω)1/\tau(\omega) spectra using the sum rules discussed in the text. Applying this analysis to the charge dynamics in high-TcT_c cuprates we found radically different trends in the evolution of the DOS in the pseudogap state and in the superconducting state.Comment: 4 pages, 3 figure
    corecore