157 research outputs found

    Multi-Zone Shell Model for Turbulent Wall Bounded Flows

    Full text link
    We suggested a \emph{Multi-Zone Shell} (MZS) model for wall-bounded flows accounting for the space inhomogeneity in a "piecewise approximation", in which cross-section area of the flow, SS, is subdivided into "jj-zones". The area of the first zone, responsible for the core of the flow, S1S/2S_1\simeq S/2, and areas of the next jj-zones, SjS_j, decrease towards the wall like Sj2jS_j\propto 2^{-j}. In each jj-zone the statistics of turbulence is assumed to be space homogeneous and is described by the set of "shell velocities" unj(t)u_{nj}(t) for turbulent fluctuations of the scale 2n\propto 2^{-n}. The MZS-model includes a new set of complex variables, Vj(t)V_j(t), j=1,2,...j=1,2,... \infty, describing the amplitudes of the near wall coherent structures of the scale sj2js_j\sim 2^{-j} and responsible for the mean velocity profile. Suggested MZS-equations of motion for unj(t)u_{nj}(t) and Vj(t)V_j(t) preserve the actual conservations laws (energy, mechanical and angular momenta), respect the existing symmetries (including Galilean and scale invariance) and account for the type of the non-linearity in the Navier-Stokes equation, dimensional reasoning, etc. The MZS-model qualitatively describes important characteristics of the wall bounded turbulence, e.g., evolution of the mean velocity profile with increasing Reynolds number, \RE, from the laminar profile towards the universal logarithmic profile near the flat-plane boundary layer as \RE\to \infty.Comment: 27 pages, 17 figs, included, PRE, submitte

    Stochastic theory of spin-transfer oscillator linewidths

    Full text link
    We present a stochastic theory of linewidths for magnetization oscillations in spin-valve structures driven by spin-polarized currents. Starting from a nonlinear oscillator model derived from spin-wave theory, we derive Langevin equations for amplitude and phase fluctuations due to the presence of thermal noise. We find that the spectral linewidths are inversely proportional to the spin-wave intensities with a lower bound that is determined purely by modulations in the oscillation frequencies. Reasonable quantitative agreement with recent experimental results from spin-valve nanopillars is demonstrated.Comment: Submitted to Physical Review

    Identification of Kelvin waves: numerical challenges

    Full text link
    Kelvin waves are expected to play an essential role in the energy dissipation for quantized vortices. However, the identification of these helical distortions is not straightforward, especially in case of vortex tangle. Here we review several numerical methods that have been used to identify Kelvin waves within the vortex filament model. We test their validity using several examples and estimate whether these methods are accurate enough to verify the correct Kelvin spectrum. We also illustrate how the correlation dimension is related to different Kelvin spectra and remind that the 3D energy spectrum E(k) takes the form 1/k in the high-k region, even in the presence of Kelvin waves.Comment: 6 pages, 5 figures. The final publication is available at http://www.springerlink.co

    Interaction of ballistic quasiparticles and vortex configurations in superfluid He3-B

    Get PDF
    The vortex line density of turbulent superfluid He3-B at very low temperature is deduced by detecting the shadow of ballistic quasiparticles which are Andreev reflected by quantized vortices. Until now the measured total shadow has been interpreted as the sum of shadows arising from interactions of a single quasiparticle with a single vortex. By integrating numerically the quasi-classical Hamiltonian equations of motion of ballistic quasiparticles in the presence of nontrivial but relatively simple vortex systems (such as vortex-vortex and vortex-antivortex pairs and small clusters of vortices) we show that partial screening can take place, and the total shadow is not necessarily the sum of the shadows. We have also found that it is possible that, upon impinging on complex vortex configurations, quasiparticles experience multiple reflections, which can be classical, Andreev, or both.Comment: To appear in Phys Rev

    Observation of an Inverse Energy Cascade in Developed Acoustic Turbulence in Superfluid Helium

    Get PDF
    We report observation of an inverse energy cascade in second sound acoustic turbulence in He II. Its onset occurs above a critical driving energy and it is accompanied by giant waves that constitute an acoustic analogue of the rogue waves that occasionally appear on the surface of the ocean. The theory of the phenomenon is developed and shown to be in good agreement with the experiments.Comment: 4 pages, 5 figures. The final version just prior to publicatio

    Resonance states below pion-nucleon threshold and their consequences for nuclear systems

    Get PDF
    Regular sequences of narrow peaks have been observed in the missing mass spectra in the reactions pp --> p pi^+ X and pd --> ppX_1 below pion-production threshold. They are interpreted in the literature as manifestations of supernarrow light dibaryons, or nucleon resonances, or light pions forming resonance states with the nucleon in its ground state. We discuss how existence of such exotic states would affect properties of nuclear systems. We show that the neutron star structure is drastically changed in all three cases. We find that in the presence of dibaryons or nucleon resonances the maximal possible mass of a neutron star would be smaller than the observational limit. Presence of light pions does not contradict the observed neutron star masses. Light pions allow for the existence of extended nuclear objects of arbitrary size, bound by strong and electromagnetic forces.Comment: preprint ECT*-02-18, 6 pages, 3 figure

    Lagrangian Statistics and Temporal Intermittency in a Shell Model of Turbulence

    Get PDF
    We study the statistics of single particle Lagrangian velocity in a shell model of turbulence. We show that the small scale velocity fluctuations are intermittent, with scaling exponents connected to the Eulerian structure function scaling exponents. The observed reduced scaling range is interpreted as a manifestation of the intermediate dissipative range, as it disappears in a Gaussian model of turbulence.Comment: 4 pages, 5 figure

    Stable topological textures in a classical 2D Heisenberg model

    Full text link
    We show that stable localized topological soliton textures (skyrmions) with π2\pi_2 topological charge ν1\nu \geq 1 exist in a classical 2D Heisenberg model of a ferromagnet with uniaxial anisotropy. For this model the soliton exist only if the number of bound magnons exceeds some threshold value NcrN_{\rm cr} depending on ν\nu and the effective anisotropy constant KeffK_{\rm eff}. We define soliton phase diagram as the dependence of threshold energies and bound magnons number on anisotropy constant. The phase boundary lines are monotonous for both ν=1\nu=1 and ν>2\nu >2, while the solitons with ν=2\nu=2 reveal peculiar nonmonotonous behavior, determining the transition regime from low to high topological charges. In particular, the soliton energy per topological charge (topological energy density) achieves a minimum neither for ν=1\nu=1 nor high charges, but rather for intermediate values ν=2\nu=2 or ν=3\nu=3.Comment: 8 pages, 4 figure

    One-loop calculations of hyperon polarizabilities under the large N_c consistency condition

    Get PDF
    The spin-averaged electromagnetic polarizabilities of the hyperons Λ\Lambda and Σ\Sigma are calculated within the one-loop approximation by use of the dispersion theory. The photon and meson couplings to hyperons are determined so as to satisfy the large N_c consistency condition. It is shown that in order for the large N_c consistency condition to hold exotic hyperon states such as Σ\Sigma^{**} with I=2 and J=3/2 are required in the calculation of the magnetic polarizability of the Σ\Sigma state.Comment: 17 pages, REVTeX, no figure

    Far-off-resonant wave interaction in one-dimensional photonic crystals with quadratic nonlinearity

    Full text link
    We extend a recently developed Hamiltonian formalism for nonlinear wave interaction processes in spatially periodic dielectric structures to the far-off-resonant regime, and investigate numerically the three-wave resonance conditions in a one-dimensional optical medium with χ(2)\chi^{(2)} nonlinearity. In particular, we demonstrate that the cascading of nonresonant wave interaction processes generates an effective χ(3)\chi^{(3)} nonlinear response in these systems. We obtain the corresponding coupling coefficients through appropriate normal form transformations that formally lead to the Zakharov equation for spatially periodic optical media.Comment: 14 pages, 4 figure
    corecore