5,000 research outputs found
Re-thinking flexibility in higher education: A shared responsibility of students and educators
In recent years, there has been a growing recognition of the importance of flexibility in higher education as a key factor that can contribute to enhancing student learning and accessibility. However, flexibility has previously been investigated through an institutional lens that fails to consider those directly involvedâstudents and educators. Moreover, the majority of current research regarding flexibility is based on anecdotal evidence and theoretical frameworks; therefore, evidence-based research is lacking.
This plenary session is presented from a student perspective, who found that often, the parts of her identity that she took pride inâmiddle eastern background, gender, and hearing lossâwere also the cause of her struggles. In conversations with other students, it was revealed that their diversity or life circumstances hindered their ability to pursue education. Flexibility was identified as key to enhancing their academic experience. Thus, the presenter decided to focus her fourth year thesis on a project that investigated studentsâ and educatorsâ experiences surrounding flexibility to inform future policies about effective flexible practices that accurately represent both groups.
This session will highlight similarities and differences between studentsâ and educatorsâ experiences, barriers educators face when implementing flexibility, and a current misalignment in perceptions of flexibility between students and educators. Engaging in transparent and reciprocal open conversations can enhance the student-educator bond and solidify both groupsâ sense of belonging.
This study was approved by Westernâs Non-Medical Research Ethics Board
Analytical sun synchronous low-thrust manoeuvres
Article describes analytical sun synchronous low-thrust manoeuvres
Using Innovative Technologies for Manufacturing Rocket Engine Hardware
Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As the United States enters into the next space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, rapid manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on NASA s Space Launch System (SLS) upper stage engine, J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator (GG) discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using a workhorse gas generator (WHGG) test fixture at MSFC's East Test Area, the duct was subjected to extreme J-2X hot gas environments during 7 tests for a total of 537 seconds of hot-fire time. The duct underwent extensive post-test evaluation and showed no signs of degradation. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended
Design and development of a new ambr250Âź bioreactor vessel for improved cell and gene therapy applications
The emergence of cell and gene therapies has generated significant interest in their clinical and commercial potential. However, these therapies are prohibitively expensive to manufacture and can require extensive time for development due to our limited process knowledge and understanding. The automated ambr250Ÿ stirred-tank bioreactor platform provides an effective platform for high-throughput process development. However, the original dual pitched-blade 20 mm impeller and baffles proved sub-optimal for cell therapy candidates that require suspension of microcarriers (e.g. for the culture of adherent human mesenchymal stem cells) or other particles such as activating DynabeadsŸ (e.g. for the culture of human T-cells). We demonstrate the development of a new ambr250Ÿ stirred-tank bioreactor vessel which has been designed specifically to improve the suspension of microcarriers/beads and thereby improve the culture of such cellular systems. The new design is unbaffled and has a single, larger elephant ear impeller. We undertook a range of engineering and physical characterizations to determine which vessel and impeller configuration would be most suitable for suspension based on the minimum agitation speed (NJS) and associated specific power input (P/V)JS. A vessel (diameter, T, = 60 mm) without baffles and incorporating a single elephant ear impeller (diameter 30 mm and 45° pitch-blade angle) was selected as it had the lowest (P/V)JS and therefore potentially, based on Kolmogorov concepts, was the most flexible system. These experimentally-based conclusions were further validated firstly with computational fluid dynamic (CFD) simulations and secondly experimental studies involving the culture of both T-cells with DynabeadsŸ and hMSCs on microcarriers. The new ambr250Ÿ stirred-tank bioreactor successfully supported the culture of both cell types, with the T-cell culture demonstrating significant improvements compared to the original ambr250Ÿ and the hMSC-microcarrier culture gave significantly higher yields compared with spinner flask cultures. The new ambr250Ÿ bioreactor vessel design is an effective process development tool for cell and gene therapy candidates and potentially for autologous manufacture too
Extension of the sun-synchronous Orbit
Through careful consideration of the orbit perturbation force due to the oblate nature of the primary body a secular variation of the ascending node angle of a near-polar orbit can be induced without expulsion of propellant. Resultantly, the orbit perturbations can be used to maintain the orbit plane in, for example, a near-perpendicular (or at any other angle) alignment to the Sun-line throughout the full year of the primary body; such orbits are normally termed Sun-synchronous orbits [1, 2]. Sun-synchronous orbits about the Earth are typically near-circular Low-Earth Orbits (LEOs), with an altitude of less than 1500 km. It is normal to design a LEO such that the orbit period is synchronised with the rotation of the Earthâs surface over a given period, such that a repeating ground-track is established. A repeating ground-track, together with the near-constant illumination conditions of the ground-track when observed from a Sun-synchronous orbit, enables repeat observations of a target over an extended period under similar illumination conditions [1, 2]. For this reason, Sun-synchronous orbits are extensively used by Earth Observation (EO) platforms, including currently the Environmental Satellite (ENVISAT), the second European Remote Sensing satellite (ERS-2) and many more. By definition, a given Sun-synchronous orbit is a finite resource similar to a geostationary orbit. A typical characterising parameter of a Sun-synchronous orbit is the Mean Local Solar Time (MLST) at descending node, with a value of 1030 hours typical. Note that ERS-1 and ERS-2 used a MLST at descending node of 1030 hours ± 5 minutes, while ENVISAT uses a 1000 hours ± 5 minutes MLST at descending node [3]. Following selection of the MLST at descending node and for a given desired repeat ground-track, the orbit period and hence the semi-major axis are fixed, thereafter assuming a circular orbit is desired it is found that only a single orbit inclination will enable a Sun-synchronous orbit [2]. As such, only a few spacecraft can populate a given repeat ground-track Sun-synchronous orbit without compromise, for example on the MLST at descending node. Indeed a notable feature of on-going studies by the ENVISAT Post launch Support Office is the desire to ensure sufficient propellant remains at end-of-mission for re-orbiting to a graveyard orbit to ensure the orbital slot is available for future missions [4]. An extension to the Sun-synchronous orbit is considered using an undefined, non-orientation constrained, low-thrust propulsion system. Initially the low-thrust propulsion system will be considered for the free selection of orbit inclination and altitude while maintaining the Sun-synchronous condition. Subsequently the maintenance of a given Sun-synchronous repeat-ground track will be considered, using the low-thrust propulsion system to enable the free selection of orbit altitude. An analytical expression will be developed to describe these extensions prior to then validating the analytical expressions within a numerical simulation of a spacecraft orbit. Finally, an analysis will be presented on transfer and injection trajectories to these orbits
Vanishing spin alignment : experimental indication of triaxial nuclear molecule
Fragment-fragment- coincidences have been measured for at an energy corresponding to the population of a conjectured
resonance in Ni. Fragment angular distributions as well as -ray
angular correlations indicate that the spin orientations of the outgoing
fragments are perpendicular to the orbital angular momentum. This differs from
the and the resonances, and
suggests two oblate nuclei interacting in an equator-to-equator
molecular configuration.Comment: 14 pages standard REVTeX file, 3 ps Figures -- Accepted for
publication in Physical Review C (Rapid Communication
Exact diagonalization of the S=1/2 Heisenberg antiferromagnet on finite bcc lattices to estimate properties on the infinite lattice
Here we generate finite bipartite body-centred cubic lattices up to 32
vertices. We have studied the spin one half Heisenberg antiferromagnet by
diagonalizing its Hamiltonian on each of the finite lattices and hence
computing its ground state properties. By extrapolation of these data we obtain
estimates of the T = 0 properties on the infinite bcc lattice. Our estimate of
the T = 0 energy agrees to five parts in ten thousand with third order spin
wave and series expansion method estimates, while our estimate of the staggered
magnetization agrees with the spin wave estimate to within a quarter of one
percent.Comment: 16 pages, LaTeX, 1 ps figure, to appear in J.Phys.
- âŠ