239 research outputs found

    Targeting microRNAs as a Therapeutic Strategy to Reduce Oxidative Stress in Diabetes

    Get PDF
    Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia as a consequence of pancreatic β cell loss and/or dysfunction, also caused by oxidative stress. The molecular mechanisms involved inβ cell dysfunction and in response to oxidative stress are also regulated by microRNAs (miRNAs). miRNAs are a class of negative gene regulators, which modulate pathologic mechanisms occurring in diabetes and its complications. Although several pharmacological therapies specifically targeting miRNAs have already been developed and brought to the clinic, most previous miRNA-based drug delivery methods were unable to target a specific miRNA in a single cell type or tissue, leading to important off-target effects. In order to overcome these issues, aptamers and nanoparticles have been described as non-cytotoxic vehicles for miRNA-based drug delivery. These approaches could represent an innovative way to specifically target and modulate miRNAs involved in oxidative stress in diabetes and its complications. Therefore, the aims of this review are: (i) to report the role of miRNAs involved in oxidative stress in diabetes as promising therapeutic targets; (ii) to shed light onto the new delivery strategies developed to modulate the expression of miRNAs in diseases

    Increased use of high-flow nasal cannulas after the pandemic in bronchiolitis: a more severe disease or a changed physician’s attitude?

    Get PDF
    After the SARS-CoV-2 pandemic, we noticed a marked increase in high-flow nasal cannula use for bronchiolitis. This study aims to report the percentage of children treated with high-flow nasal cannula (HFNC) in various seasons. The secondary outcomes were admissions for bronchiolitis, virological results, hospital burden, and NICU/PICU need. We conducted a retrospective study in four Italian hospitals, examining the medical records of all infants (< 12 months) hospitalized for bronchiolitis in the last four winter seasons (1 September–31 March 2018–2022). In the 2021–2022 winter season, 66% of admitted children received HFNC versus 23%, 38%, and 35% in the previous 3 years. A total of 876 patients were hospitalized in the study periods. In 2021–2022, 300 infants were hospitalized for bronchiolitis, 22 in 2020–2021, 259 in 2019–2020, and 295 in 2018–2019. The percentage of patients needing intensive care varied from 28.7% to 18%, 22%, and 15% in each of the four considered periods (p < 0.05). Seventy-seven percent of children received oxygen in the 2021–2022 winter; vs 50%, 63%, and 55% (p < 0.01) in the previous 3 years. NIV/CPAP was used in 23%, 9%, 16%, and 12%, respectively. In 2021–2020, 2% of patients were intubated; 0 in 2020–2021, 3% in 2019–2020, and 1% in 2018–2019. Conclusion: This study shows a marked increase in respiratory support and intensive care admissions this last winter. While these severity indexes were all driven by medical choices, more reliable indexes such as intubation rate and length of stay did not change. Therefore, we suggest that there is a more aggressive treatment attitude rather than a more severe disease.What is Known:• COVID-19 pandemic deeply impacted bronchiolitis epidemiology, reducing hospitalizations to onetenth. In the 2021-2022 winter, bronchiolitis resurged to pre-pandemic numbers in Europe.What is New:• Bronchiolitis hospitalization rose much faster in the 2021-2022 winter period, peaking at a higher level. Respiratory supports and high-flow nasal cannula increased significantly compared to the pre-pandemic era

    MicroRNA Expression in the Aqueous Humor of Patients with Diabetic Macular Edema.

    Get PDF
    We identified and compared secreted microRNA (miRNA) expression in aqueous humor (AH) and plasma samples among patients with: type 2 diabetes mellitus (T2D) complicated by non-proliferative diabetic retinopathy (DR) associated with diabetic macular edema (DME) (DME group: 12 patients); T2D patients without DR (D group: 8 patients); and non-diabetic patients (CTR group: 10 patients). Individual patient AH samples from five subjects in each group were profiled on TaqMan Low Density MicroRNA Array Cards. Differentially expressed miRNAs identified from profiling were then validated in single assay for all subjects. The miRNAs validated in AH were then evaluated in single assay in plasma. Gene Ontology (GO) analysis was conducted. From AH profiling, 119 mature miRNAs were detected: 86 in the DME group, 113 in the D group and 107 in the CTR group. miRNA underexpression in the DME group was confirmed in single assay for let-7c-5p, miR-200b-3p, miR-199a-3p and miR-365-3p. Of these four, miR-199a-3p and miR-365-3p were downregulated also in the plasma of the DME group. GO highlighted 54 validated target genes of miR-199a-3p, miR-200b-3p and miR-365-3p potentially implied in DME pathogenesis. Although more studies are needed, miR-200b-3p, let-7c-5p, miR-365-3p and miR-199a-3p represent interesting molecules in the study of DME pathogenesis

    Intra-islet insulin synthesis defects are associated with endoplasmic reticulum stress and loss of beta cell identity in human diabetes

    Get PDF
    Aims/hypothesis: Endoplasmic reticulum (ER) stress and beta cell dedifferentiation both play leading roles in impaired insulin secretion in overt type 2 diabetes. Whether and how these factors are related in the natural history of the disease remains, however, unclear. Methods: In this study, we analysed pancreas biopsies from a cohort of metabolically characterised living donors to identify defects in in situ insulin synthesis and intra-islet expression of ER stress and beta cell phenotype markers. Results: We provide evidence that in situ altered insulin processing is closely connected to in vivo worsening of beta cell function. Further, activation of ER stress genes reflects the alteration of insulin processing in situ. Using a combination of 17 different markers, we characterised individual pancreatic islets from normal glucose tolerant, impaired glucose tolerant and type 2 diabetic participants and reconstructed disease progression. Conclusions/interpretation: Our study suggests that increased beta cell workload is accompanied by a progressive increase in ER stress with defects in insulin synthesis and loss of beta cell identity. Graphical abstract: [Figure not available: see fulltext.

    The risk stratification of adverse neonatal outcomes in women with gestational diabetes (STRONG) study

    Get PDF
    Aims: To assess the risk of adverse neonatal outcomes in women with gestational diabetes (GDM) by identifying subgroups of women at higher risk to recognize the characteristics most associated with an excess of risk. Methods: Observational, retrospective, multicenter study involving consecutive women with GDM. To identify distinct and homogeneous subgroups of women at a higher risk, the RECursive Partitioning and AMalgamation (RECPAM) method was used. Overall, 2736 pregnancies complicated by GDM were analyzed. The main outcome measure was the occurrence of adverse neonatal outcomes in pregnancies complicated by GDM. Results: Among study participants (median age 36.8 years, pre-gestational BMI 24.8 kg/m2), six miscarriages, one neonatal death, but no maternal death was recorded. The occurrence of the cumulative adverse outcome (OR 2.48, 95% CI 1.59–3.87), large for gestational age (OR 3.99, 95% CI 2.40–6.63), fetal malformation (OR 2.66, 95% CI 1.00–7.18), and respiratory distress (OR 4.33, 95% CI 1.33–14.12) was associated with previous macrosomia. Large for gestational age was also associated with obesity (OR 1.46, 95% CI 1.00–2.15). Small for gestational age was associated with first trimester glucose levels (OR 1.96, 95% CI 1.04–3.69). Neonatal hypoglycemia was associated with overweight (OR 1.52, 95% CI 1.02–2.27) and obesity (OR 1.62, 95% CI 1.04–2.51). The RECPAM analysis identified high-risk subgroups mainly characterized by high pre-pregnancy BMI (OR 1.68, 95% CI 1.21–2.33 for obese; OR 1.38 95% CI 1.03–1.87 for overweight). Conclusions: A deep investigation on the factors associated with adverse neonatal outcomes requires a risk stratification. In particular, great attention must be paid to the prevention and treatment of obesity
    corecore