4 research outputs found

    Titanium Oxide: A Bioactive Factor in Osteoblast Differentiation

    Get PDF
    Titanium and titanium alloys are currently accepted as the gold standard in dental applications. Their excellent biocompatibility has been attributed to the inert titanium surface through the formation of a thin native oxide which has been correlated to the excellent corrosion resistance of this material in body fluids. Whether this titanium oxide layer is essential to the outstanding biocompatibility of titanium surfaces in orthopedic biomaterial applications is still a moot point. To study this critical aspect further, human fetal osteoblasts were cultured on thermally oxidized and microarc oxidized (MAO) surfaces and cell differentiation, a key indicator in bone tissue growth, was quantified by measuring the expression of alkaline phosphatase (ALP) using a commercial assay kit. Cell attachment was similar on all the oxidized surfaces although ALP expression was highest on the oxidized titanium alloy surfaces. Untreated titanium alloy surfaces showed a distinctly lower degree of ALP activity. This indicates that titanium oxide clearly upregulates ALP expression in human fetal osteoblasts and may be a key bioactive factor that causes the excellent biocompatibility of titanium alloys. This result may make it imperative to incorporate titanium oxide in all hard tissue applications involving titanium and other alloys

    Vinculin expression in MC3T3-E1 cells in response to mechanical stimulus

    No full text
    Loading frequency is known to influence the expression of the focal adhesions of the adherent cells. A small cyclical tensile force was transmitted to mouse pre-osteoblast MC3T3-E1 cells through PDMS substrates of varying stiffness. Changes in cell behavior with respect to proliferation and characteristics of focal adhesions were quantified through immunofluorescence labeling of vinculin. Amount of inactive vinculin was higher on substrates subjected to cyclic stimulation when compared with the results of the static substrates, whereas the number and area of focal adhesion points underwent a reduction. Inactive vinculin appears as a cloud in the cytoplasm in the vicinity of the nucleus. Keywords: MC3T3-E1 Cells, Mechanical Stimulus, Focal Adhesions, Vinculi
    corecore