417 research outputs found

    Coherent Particle Transfer in an On-Demand Single-Electron Source

    Get PDF
    Coherent electron transfer from a localized state trapped in a quantum dot into a ballistic conductor, taking place in on-demand electron sources, in general may result in excitation of particle-hole pairs. We consider a simple model for these effects, involving a resonance level with time-dependent energy, and derive Floquet scattering matrix describing inelastic transitions of particles in the Fermi sea. We find that, as the resonance level is driven through the Fermi level, particle transfer may take place completely without particle-hole excitations for certain driving protocols. In particular, such noiseless transfer occurs when the level moves with constant rapidity, its energy changing linearly with time. A detection scheme for studying the coherence of particle transfer is proposed.Comment: 5 pages, 3 figures. Updated introduction, Fig. 1, and reference

    Electron attachment to SF6 and lifetimes of SF6- negative ions

    Full text link
    We study the process of low-energy electron capture by the SF6 molecule. Our approach is based on the model of Gauyacq and Herzenberg [J. Phys. B 17, 1155 (1984)] in which the electron motion is coupled to the fully symmetric vibrational mode through a weakly bound or virtual s state. By tuning the two free parameters of the model, we achieve an accurate description of the measured electron attachment cross section and good agreement with vibrational excitation cross sections of the fully symmetric mode. An extension of the model provides a limit on the characteristic time of intramolecular vibrational relaxation in highly-excited SF6-. By evaluating the total vibrational spectrum density of SF6-, we estimate the widths of the vibrational Feshbach resonances of the long-lived negative ion. We also analyse the possible distribution of the widths and its effect on the lifetime measurements, and investigate nonexponential decay features in metastable SF6-.Comment: 22 pages, 10 figures, submitted to Phys. Rev.

    Counterintuitive transitions in the multistate Landau-Zener problem with linear level crossings

    Full text link
    We generalize the Brundobler-Elser hypothesis in the multistate Landau-Zener problem to the case when instead of a state with the highest slope of the diabatic energy level there is a band of states with an arbitrary number of parallel levels having the same slope. We argue that the probabilities of counterintuitive transitions among such states are exactly zero.Comment: 9 pages, 5 figure

    Making Cold Molecules by Time-dependent Feshbach Resonances

    Full text link
    Pairs of trapped atoms can be associated to make a diatomic molecule using a time dependent magnetic field to ramp the energy of a scattering resonance state from above to below the scattering threshold. A relatively simple model, parameterized in terms of the background scattering length and resonance width and magnetic moment, can be used to predict conversion probabilities from atoms to molecules. The model and its Landau-Zener interpretation are described and illustrated by specific calculations for 23^{23}Na, 87^{87}Rb, and 133^{133}Cs resonances. The model can be readily adapted to Bose-Einstein condensates. Comparison with full many-body calculations for the condensate case show that the model is very useful for making simple estimates of molecule conversion efficiencies.Comment: 11 pages, 11 figures; talk for Quantum Challenges Symposium, Warsaw, Poland, September 4-7, 2003. Published in Journal of Modern Optics 51, 1787-1806 (2004). Typographical errors in Journal article correcte

    Scalar and Spinor Particles with Low Binding Energy in the Strong Stationary Magnetic Field Studied by Means of Two-and Three-Dimensional Models

    Get PDF
    On the basis of analytic solutions of Schrodinger and Pauli equations for a uniform magnetic field and a single attractive δ(r)\delta({\bf r})-potential the equations for the bound one-active electron states are discussed. It is vary important that ground electron states in the magnetic field essentially different from the analog state of spin-0 particles that binding energy has been intensively studied at more then forty years ago. We show that binding energy equations for spin-1/2 particles can be obtained without using of a well-known language of boundary conditions in the model of δ\delta-potential that has been developed in pioneering works. Obtained equations are used for the analytically calculation of the energy level displacements, which demonstrate nonlinear dependencies on field intensities. It is shown that in a case of the weak intensity a magnetic field indeed plays a stabilizing role in considering systems. However the strong magnetic field shows the opposite action. We are expected that these properties can be of importance for real quantum mechanical fermionic systems in two- and three-dimensional cases.Comment: 18 page

    Non-divergent pseudo-potential treatment of spin-polarized fermions under 1D and 3D harmonic confinement

    Full text link
    Atom-atom scattering of bosonic one-dimensional (1D) atoms has been modeled successfully using a zero-range delta-function potential, while that of bosonic 3D atoms has been modeled successfully using Fermi-Huang's regularized s-wave pseudo-potential. Here, we derive the eigenenergies of two spin-polarized 1D fermions under external harmonic confinement interacting through a zero-range potential, which only acts on odd-parity wave functions, analytically. We also present a divergent-free zero-range potential treatment of two spin-polarized 3D fermions under harmonic confinement. Our pseudo-potential treatments are verified through numerical calculations for short-range model potentials.Comment: 9 pages, 4 figures (subm. to PRA on 03/15/2004

    Quantum theory of an atom laser originating from a Bose-Einstein condensate or a Fermi gas in the presence of gravity

    Full text link
    We present a 3D quantum mechanical theory of radio-frequency outcoupled atom lasers from trapped atomic gases in the presence of the gravitational force. Predictions for the total outcoupling rate as a function of the radio-frequency and for the beam wave function are given. We establish a sum rule for the energy integrated outcoupling, which leads to a separate determination of the coupling strength between the atoms and the radiation field. For a non-interacting Bose-Einstein condensate analytic solutions are derived which are subsequently extended to include the effects of atomic interactions. The interactions enhance interference effects in the beam profile and modify the outcoupling rate of the atom laser. We provide a complete quantum mechanical solution which is in line with experimental findings and allows to determine the validity of commonly used approximative methods. We also extend the formalism to a fermionic atom laser and analyze the effect of superfluidity on the outcoupling of atoms.Comment: 13 pages, 8 figures, slightly expanded versio

    Stable Heteronuclear Few-Atom Bound States in Mixed Dimensions

    Full text link
    We study few-body problems in mixed dimensions with N≥2N \ge 2 heavy atoms trapped individually in parallel one-dimensional tubes or two-dimensional disks, and a single light atom travels freely in three dimensions. By using the Born-Oppenheimer approximation, we find three- and four-body bound states for a broad region of heavy-light atom scattering length combinations. Specifically, the existence of trimer and tetramer states persist to negative scattering lengths regime, where no two-body bound state is present. These few-body bound states are analogous to the Efimov states in three dimensions, but are stable against three-body recombination due to geometric separation. In addition, we find that the binding energy of the ground trimer and tetramer state reaches its maximum value when the scattering lengths are comparable to the separation between the low-dimensional traps. This resonant behavior is a unique feature for the few-body bound states in mixed dimensions.Comment: Extended version with 14 pages and 14 figure

    Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models and STIRAP

    Full text link
    We investigate the dynamics of a Bose--Einstein condensate (BEC) in a triple-well trap in a three-level approximation. The inter-atomic interactions are taken into account in a mean-field approximation (Gross-Pitaevskii equation), leading to a nonlinear three-level model. New eigenstates emerge due to the nonlinearity, depending on the system parameters. Adiabaticity breaks down if such a nonlinear eigenstate disappears when the parameters are varied. The dynamical implications of this loss of adiabaticity are analyzed for two important special cases: A three level Landau-Zener model and the STIRAP scheme. We discuss the emergence of looped levels for an equal-slope Landau-Zener model. The Zener tunneling probability does not tend to zero in the adiabatic limit and shows pronounced oscillations as a function of the velocity of the parameter variation. Furthermore we generalize the STIRAP scheme for adiabatic coherent population transfer between atomic states to the nonlinear case. It is shown that STIRAP breaks down if the nonlinearity exceeds the detuning.Comment: RevTex4, 7 pages, 11 figures, content extended and title/abstract change

    Degenerate Landau-Zener model: Exact analytical solution

    Full text link
    The exact analytical solution of the degenerate Landau-Zener model, wherein two bands of degenerate energies cross in time, is presented. The solution is derived by using the Morris-Shore transformation, which reduces the fully coupled system to a set of independent nondegenerate two-state systems and a set of decoupled states. Due to the divergence of the phase of the off-diagonal element of the propagator in the original Landau-Zener model, not all transition probabilities exist for infinite time duration. In general, apart from some special cases, only the transition probabilities between states within the same degenerate set exist, but not between states of different sets. An illustration is presented for the transition between the magnetic sublevels of two atomic levels with total angular momenta J=2 and 1
    • …
    corecore