138 research outputs found

    Extended quantum critical phase in a magnetized spin-1/2 antiferromagnetic chain

    Full text link
    Measurements are reported of the magnetic field dependence of excitations in the quantum critical state of the spin S=1/2 linear chain Heisenberg antiferromagnet copper pyrazine dinitrate (CuPzN). The complete spectrum was measured at k_B T/J <= 0.025 for H=0 and H=8.7 Tesla where the system is ~30% magnetized. At H=0, the results are in quantitative agreement with exact calculations of the dynamic spin correlation function for a two-spinon continuum. At high magnetic field, there are multiple overlapping continua with incommensurate soft modes. The boundaries of these continua confirm long-standing predictions, and the intensities are consistent with exact diagonalization and Bethe Ansatz calculations.Comment: 4 pages, 4 figure

    Field-driven phase transitions in a quasi-two-dimensional quantum antiferromagnet

    Full text link
    We report magnetic susceptibility, specific heat, and neutron scattering measurements as a function of applied magnetic field and temperature to characterize the S=1/2S=1/2 quasi-two-dimensional frustrated magnet piperazinium hexachlorodicuprate (PHCC). The experiments reveal four distinct phases. At low temperatures and fields the material forms a quantum paramagnet with a 1 meV singlet triplet gap and a magnon bandwidth of 1.7 meV. The singlet state involves multiple spin pairs some of which have negative ground state bond energies. Increasing the field at low temperatures induces three dimensional long range antiferromagnetic order at 7.5 Tesla through a continuous phase transition that can be described as magnon Bose-Einstein condensation. The phase transition to a fully polarized ferromagnetic state occurs at 37 Tesla. The ordered antiferromagnetic phase is surrounded by a renormalized classical regime. The crossover to this phase from the quantum paramagnet is marked by a distinct anomaly in the magnetic susceptibility which coincides with closure of the finite temperature singlet-triplet pseudo gap. The phase boundary between the quantum paramagnet and the Bose-Einstein condensate features a finite temperature minimum at T=0.2T=0.2 K, which may be associated with coupling to nuclear spin or lattice degrees of freedom close to quantum criticality.Comment: Submitted to New Journal of Physic

    Structure of end states for a Haldane Spin Chain

    Get PDF
    Inelastic neutron scattering was used to probe edge states in a quantum spin liquid. The experiment was performed on finite length antiferromagnetic spin-1 chains in Y_2BaNi_{1-x}Mg_xO_5. At finite fields, there is a Zeeman resonance below the Haldane gap. The wave vector dependence of its intensity provides direct evidence for staggered magnetization at chain ends, which decays exponentially towards the bulk (xi = 8(1) at T=0.1K). Continuum contributions to the chain end spectrum indicate inter-chain-segment interactions. We also observe a finite size blue shift of the Haldane gap.Comment: 4 pages RevTex, 3 figure

    Less than 50% sublattice polarization in an insulating S=3/2 kagome' antiferromagnet at low T

    Full text link
    We have found weak long range antiferromagnetic order in the quasi-two-dimensional insulating oxide KCr3(OD)6(SO4)2 KCr_3(OD)_6(SO_4)_2 which contains Cr3+^{3+} S=3/2 ions on a kagom\'{e} lattice. In a sample with ≈\approx 76% occupancy of the chromium sites the ordered moment is 1.1(3)μB\mu_B per chromium ion which is only one third of the N\'{e}el value gμBS=3μBg\mu_BS=3\mu_B. The magnetic unit cell equals the chemical unit cell, a situation which is favored by inter-plane interactions. Gapless quantum spin-fluctuations (Δ/kB>\Delta/k_B > T_N=1.6Karethedominantcontributiontothespincorrelationfunction, = 1.6K are the dominant contribution to the spin correlation function, S(Q,\omega)$ in the ordered phase.Comment: 18 pages, RevTex/Latex, with 6 figure

    Spin Pseudo Gap in La2-xSrxCuO4 Studied by Neutron Scattering

    Full text link
    Spin excitations of La2-xSrxCuO have been studied using inelastic neutron scattering techniques in the energy range of 2 meV =< w =< 12 meV and the temperature range of 8 K =< T =< 150 K. We observed a signature of a spin pseudo gap in the excitation spectrum above Tc for the slightly overdoped sample with x = 0.18. On heating, the spin pseudo gap gradually collapses between T = 80 K and 150 K. For the x = 0.15 and 0.20, although the visibility of gap-like structure at T ~ Tc is lower compared to the x = 0.18 sample, the broad bump of kai"(w) appears at w ~ 5 meV,close to the spin-gap energy at base temperature, suggests the existence of the spin pseudo gap in the normal state.Comment: revtex, 7 pages, 8 eps figures, PRB (2003) in pres

    Frustration-Induced Two Dimensional Quantum Disordered Phase in Piperazinium Hexachlorodicuprate

    Full text link
    Piperazinium Hexachlorodicuprate (PHCC) is shown to be a frustrated quasi-two-dimensional quantum Heisenberg antiferromagnet with a gapped spectrum. Zero-field inelastic neutron scattering and susceptibility and specific heat measurements as a function of applied magnetic field are presented. At T = 1.5 K, the magnetic excitation spectrum is dominated by a single propagating mode with a gap, Delta = 1 meV, and bandwidth of approximately 1.8 meV in the (h0l) plane. The mode has no dispersion along the b* direction indicating that neighboring a-c planes of the triclinic structure are magnetically decoupled. The heat capacity shows a reduction of the gap as a function of applied magnetic field in agreement with a singlet-triplet excitation spectrum. A field-induced ordered phase is observed in heat capacity and magnetic susceptibility measurements for magnetic fields greater than H_c1 approximately equal to 7.5 Tesla. Analysis of the neutron scattering data reveals the important exchange interactions and indicates that some of these are highly frustrated.Comment: 13 pages with 14 figures, 7 pages of text, 6 pages of figures. Submitted to Phys. Rev. B 4/7/2001. email comments to [email protected] or [email protected]

    Frustrated 3-Dimensional Quantum Spin Liquid in CuHpCl

    Full text link
    Inelastic neutron scattering measurements are reported for the quantum antiferromagnetic material Cu_2(C_5H_12N_2)_2Cl_4 (CuHpCl). The magnetic excitation spectrum forms a band extending from 0.9 meV to 1.4 meV. The spectrum contains two modes that disperse throughout the a-c plane of the monoclinic unit cell with less dispersion along the unique b-axis. Simple arguments based on the measured dispersion relations and the crystal structure show that a spin ladder model is inappropriate for describing CuHpCl. Instead, it is proposed that hydrogen bond mediated exchange interactions between the bi-nuclear molecular units yield a three-dimensional interacting spin system with a recurrent triangular motif similar to the Shastry-Sutherland Model (SSM). Model independent analysis based on the first moment sum rule shows that at least four distinct spin pairs are strongly correlated and that two of these, including the dimer bond of the corresponding SSM, are magnetically frustrated. These results show that CuHpCl should be classified as a frustration induced three dimensional quantum spin liquid.Comment: 13 pages, 17 figures (Color) ReSubmitted to Phys. Rev. B 9/21/2001 resubmission has new content email comments to [email protected] or [email protected]

    Unconventional ferromagnetic and spin-glass states of the reentrant spin glass Fe0.7Al0.3

    Full text link
    Spin excitations of single crystal Fe0.7Al0.3 were investigated over a wide range in energy and reciprocal space with inelastic neutron scattering. In the ferromagnetic phase, propagating spin wave modes become paramagnon-like diffusive modes beyond a critical wave vector q0, indicating substantial disorder in the long-range ordered state. In the spin glass phase, spin dynamics is strongly q-dependent, suggesting remnant short-range spin correlations. Quantitative model for S(energy,q) in the ``ferromagnetic'' phase is determined.Comment: 4 pages, 5 figure

    Effective treatment of anal cancer in the elderly with low-dose chemoradiotherapy

    Get PDF
    Chemoradiotherapy (CRT) is accepted as the standard initial treatment for squamous cell anal cancer. However, frail elderly patients cannot always tolerate full-dose CRT. This paper reports the results of a modified regimen for this group of patients. In all, 16 patients with biopsy-proven squamous cell carcinoma of the anal canal or margin and performance status or co-morbidity precluding the use of full-dose CRT were included in this protocol. The median age was 81 (range 77–91). Patients received a dose of 30 Gy to the gross tumour volume plus 3 cm margin in all directions. Concurrent chemotherapy comprised 5-fluorouracil 600 mg m−2 given over 24 h on days 1–4 of radiotherapy. The treatment was well tolerated. All 16 patients completed treatment as planned. Only one patient experienced any grade 3 toxicity (skin). The local control at a median follow-up of 16 months was 73% (13 out of 16). The overall survival was 69% and disease-specific survival 86%. This is a well-tolerated regimen for elderly/poor performance patients with anal cancer, which can achieve high rates of local control and survival. Longer follow-up will determine whether these encouraging results are maintained
    • …
    corecore