45,940 research outputs found

    Immunoadsorbents - Preparation and use of cellulose derivatives

    Get PDF
    Antibody isolation from blood by linking antigens to insoluble cellulose derivative

    High-resolution Earth-based lunar radar studies: Applications to lunar resource assessment

    Get PDF
    The lunar regolith will most likely be a primary raw material for lunar base construction and resource extraction. High-resolution radar observations of the Moon provide maps of radar backscatter that have intensity variations generally controlled by the local slope, material, and structural properties of the regolith. The properties that can be measured by the radar system include the dielectric constant, density, loss tangent, and wavelength scale roughness. The radar systems currently in operation at several astronomical observatories provide the ability to image the lunar surface at spatial resolutions approaching 30 m at 3.8 cm and 12.6 cm wavelengths and approximately 500 m at 70 cm wavelength. The radar signal penetrates the lunar regolith to a depth of 10-20 wavelengths so the measured backscatter contains contributions from the vacuum-regolith interface and from wavelength-scale heterogeneities in the electrical properties of the subsurface material. The three wavelengths, which are sensitive to different scale structures and scattering volumes, provide complementary information on the regolith properties. Aims of the previous and future observations include (1) analysis of the scattering properties associated with fresh impact craters, impact crater rays, and mantled deposits; (2) analysis of high-incidence-angle observations of the lunar mare to investigate measurement of the regolith dielectric constant and hence porosity; (3) investigation of interferometric techniques using two time-delayed observations of the same site, observations that require a difference in viewing geometry less than 0.05 deg and, hence, fortuitous alignment of the Earth-Moon system when visible from Arecibo Observatory

    Reply to Comment on "Quantum phase transition in the four-spin exchange antiferromagnet"

    Full text link
    We argue that our analysis of the J-Q model, presented in Phys. Rev. B 80, 174403 (2009), and based on a field-theory description of coupled dimers, captures properly the strong quantum fluctuations tendencies, and the objections outlined by L. Isaev, G. Ortiz, and J. Dukelsky, arXiv:1003.5205, are misplaced

    Microwave scattering and emission properties of large impact craters on the surface of Venus

    Get PDF
    Many of the impact craters on Venus imaged by the Magellan synthetic aperture radar (SAR) have interior floors with oblique incidence angle backscatter cross sections 2 to 16 times (3 dB to 12 dB) greater than the average scattering properties of the planet's surface. Such high backscatter cross sections are indicative of a high degree of wavelength-scale surface roughness and/or a high intrinsic reflectivity of the material forming the crater floors. Fifty-three of these (radar) bright floored craters are associated with 93 percent of the parabolic-shaped radar-dark features found in the Magellan SAR and emissivity data, features that are thought to be among the youngest on the surface of Venus. It was suggested by Campbell et al. that either the bright floors of the parabolic feature parent craters are indicative of a young impact and the floor properties are modified with time to a lower backscatter cross section or that they result from some property of the surface or subsurface material at the point of impact or from the properties of the impacting object. As a continuation of earlier work we have examined all craters with diameters greater than 30 km (except 6 that were outside the available data) so both the backscatter cross section and emissivity of the crater floors could be estimated from the Magellan data

    Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit

    Get PDF
    We demonstrate thermometry with a resolution of 80 nK/Hz\mathrm{nK} / \sqrt{\mathrm{Hz}} using an isotropic crystalline whispering-gallery mode resonator based on a dichroic dual-mode technique. We simultaneously excite two modes that have a mode frequency ratio very close to two (±0.3\pm0.3ppm). The wavelength- and temperature-dependence of the refractive index means that the frequency difference between these modes is an ultra-sensitive proxy of the resonator temperature. This approach to temperature sensing automatically suppresses sensitivity to thermal expansion and vibrationally induced changes of the resonator. We also demonstrate active suppression of temperature fluctuations in the resonator by controlling the intensity of the driving laser. The residual temperature fluctuations are shown to be below the limits set by fundamental thermodynamic fluctuations of the resonator material
    • …
    corecore