483 research outputs found
The orbifold cohomology of moduli of genus 3 curves
In this work we study the additive orbifold cohomology of the moduli stack of
smooth genus g curves. We show that this problem reduces to investigating the
rational cohomology of moduli spaces of cyclic covers of curves where the genus
of the covering curve is g. Then we work out the case of genus g=3.
Furthermore, we determine the part of the orbifold cohomology of the
Deligne-Mumford compactification of the moduli space of genus 3 curves that
comes from the Zariski closure of the inertia stack of M_3.Comment: 29 pages, 2 figures. Minor changes, to appear in Manuscripta Mat
Three-body structure of low-lying 12Be states
We investigate to what extent a description of 12Be as a three-body system
made of an inert 10Be-core and two neutrons is able to reproduce the
experimental 12Be data. Three-body wave functions are obtained with the
hyperspherical adiabatic expansion method. We study the discrete spectrum of
12Be, the structure of the different states, the predominant transition
strengths, and the continuum energy spectrum after high energy fragmentation on
a light target. Two 0+, one 2+, one 1- and one 0- bound states are found where
the first four are known experimentally whereas the 0- is predicted as an
isomeric state. An effective neutron charge, reproducing the measured B(E1)
transition and the charge rms radius in 11Be, leads to a computed B(E1)
transition strength for 12Be in agreement with the experimental value. For the
E0 and E2 transitions the contributions from core excitations could be more
significant. The experimental 10Be-neutron continuum energy spectrum is also
well reproduced except in the energy region corresponding to the 3/2- resonance
in 11Be where core excitations contribute.Comment: 16 pages, 9 figures. Accepted for publication in Physical Review
New broad 8Be nuclear resonances
Energies, total and partial widths, and reduced width amplitudes of 8Be
resonances up to an excitation energy of 26 MeV are extracted from a coupled
channel analysis of experimental data. The presence of an extremely broad J^pi
= 2^+ ``intruder'' resonance is confirmed, while a new 1^+ and very broad 4^+
resonance are discovered. A previously known 22 MeV 2^+ resonance is likely
resolved into two resonances. The experimental J^pi T = 3^(+)? resonance at 22
MeV is determined to be 3^-0, and the experimental 1^-? (at 19 MeV) and 4^-?
resonances to be isospin 0.Comment: 16 pages, LaTe
Multiscale Discriminant Saliency for Visual Attention
The bottom-up saliency, an early stage of humans' visual attention, can be
considered as a binary classification problem between center and surround
classes. Discriminant power of features for the classification is measured as
mutual information between features and two classes distribution. The estimated
discrepancy of two feature classes very much depends on considered scale
levels; then, multi-scale structure and discriminant power are integrated by
employing discrete wavelet features and Hidden markov tree (HMT). With wavelet
coefficients and Hidden Markov Tree parameters, quad-tree like label structures
are constructed and utilized in maximum a posterior probability (MAP) of hidden
class variables at corresponding dyadic sub-squares. Then, saliency value for
each dyadic square at each scale level is computed with discriminant power
principle and the MAP. Finally, across multiple scales is integrated the final
saliency map by an information maximization rule. Both standard quantitative
tools such as NSS, LCC, AUC and qualitative assessments are used for evaluating
the proposed multiscale discriminant saliency method (MDIS) against the
well-know information-based saliency method AIM on its Bruce Database wity
eye-tracking data. Simulation results are presented and analyzed to verify the
validity of MDIS as well as point out its disadvantages for further research
direction.Comment: 16 pages, ICCSA 2013 - BIOCA sessio
Chaotic Phenomenon in Nonlinear Gyrotropic Medium
Nonlinear gyrotropic medium is a medium, whose natural optical activity
depends on the intensity of the incident light wave. The Kuhn's model is used
to study nonlinear gyrotropic medium with great success. The Kuhn's model
presents itself a model of nonlinear coupled oscillators. This article is
devoted to the study of the Kuhn's nonlinear model. In the first paragraph of
the paper we study classical dynamics in case of weak as well as strong
nonlinearity. In case of week nonlinearity we have obtained the analytical
solutions, which are in good agreement with the numerical solutions. In case of
strong nonlinearity we have determined the values of those parameters for which
chaos is formed in the system under study. The second paragraph of the paper
refers to the question of the Kuhn's model integrability. It is shown, that at
the certain values of the interaction potential this model is exactly
integrable and under certain conditions it is reduced to so-called universal
Hamiltonian. The third paragraph of the paper is devoted to quantum-mechanical
consideration. It shows the possibility of stochastic absorption of external
field energy by nonlinear gyrotropic medium. The last forth paragraph of the
paper is devoted to generalization of the Kuhn's model for infinite chain of
interacting oscillators
Open/Closed String Duality for Topological Gravity with Matter
The exact FZZT brane partition function for topological gravity with matter
is computed using the dual two-matrix model. We show how the effective theory
of open strings on a stack of FZZT branes is described by the generalized
Kontsevich matrix integral, extending the earlier result for pure topological
gravity. Using the well-known relation between the Kontsevich integral and a
certain shift in the closed-string background, we conclude that these models
exhibit open/closed string duality explicitly. Just as in pure topological
gravity, the unphysical sheets of the classical FZZT moduli space are
eliminated in the exact answer. Instead, they contribute small, nonperturbative
corrections to the exact answer through Stokes' phenomenon.Comment: 23 pages, 1 figure, harvma
ΠΠΠΠΠ‘ΠΠΠΠ‘Π’Π¬ Π ΠΠΠΠΠ ΠΠ Π‘ΠΠΠΠ-ΠΠ―Π’ΠΠ Π ΠΠ₯ ΠΠΠΠ’Π ΠΠ‘Π’Π ΠΠ’ ΠΠΠΠ€ΠΠΠΠ§ΠΠ‘ΠΠΠ₯ Π Π‘Π’Π Π£ΠΠ’Π£Π ΠΠ«Π₯ ΠΠΠ ΠΠΠΠ’Π ΠΠ ΠΠΠΠ’ΠΠΠΠ
Speckle fields are widely used in optical diagnostics of biotissues and evaluation of the functional state of bioobjects. The speckle field is formed by laser radiation scattered from the object under study. It bears information about the average dimensions of the scatterers, the degree of surface roughness makes it possible to judge the structural and biophysical characteristics of individual tissue cells (particles), on the one hand, and the integral optical characteristics of the entire biological tissue. The aim of the study was β the determination of connections between the biophysical and structural characteristics of the biotissue and the light fields inside the biotissues.The model developed of the medium gives a direct relationship between the optical and biophysical parameters of the biotissue. Calculations were carried out using known solutions of the radiation transfer equation, taking into account the multilayer structure of the tissue, multiple scattering in the medium, and multiple reflection of irradiation between the layers.With the increase wavelength, the size of speckles formed by the non-scattered component (direct light) of laser radiation increases by a factor of 2 from 400 to 800 ΞΌm in the stratum corneum and 5 times from 0.6 to 3 ΞΌm for the epidermis and from 0.27 to 1.4 ΞΌm to the dermis. Typical values of sizes of speckles formed by the diffraction component of laser radiation for the stratum corneum and epidermis range from 0.02 to 0.15 ΞΌm. For the dermis typical spot sizes are up to 0.03 ΞΌm. The speckle-spot size of the diffusion component in the dermis can vary from Β±10 % at 400 nm and up to Β±23 % for 800 nm when the volume concentration of blood capillaries changes. Characteristic dependencies are obtained and biophysical factors associated with the volume concentration of blood and the degree of itβs oxygenation that affect the contrast of the speckle structure in the dermis are discussed.The of specklesΧ³ size in the layers of tissue varies from a share of micrometer to millimeter. The established dependence makes it possible to determine the depth of penetration of light into the biotissue based on the dimensions of speckles. Calculation of the contrast of the speckle structure of scattered light in visible spectral range at different depths in the biotissue made it possible to establish the dependence of the contrast value of the interference pattern on the degree of oxygenation of the blood and the volume concentration of capillaries in the dermis.Π‘ΠΏΠ΅ΠΊΠ»-ΠΏΠΎΠ»Ρ ΡΠΈΡΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π΄Π»Ρ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ Π±ΠΈΠΎΡΠΊΠ°Π½Π΅ΠΉ ΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π±ΠΈΠΎΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ². Π‘ΠΏΠ΅ΠΊΠ»-ΠΏΠΎΠ»Π΅, ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΡΠ°ΡΡΠ΅ΡΠ½Π½ΡΠΌ ΠΎΡ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΠΊΡΠ° Π»Π°Π·Π΅ΡΠ½ΡΠΌ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΠ΅ΠΌ, Π½Π΅ΡΠ΅Ρ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΎ ΡΡΠ΅Π΄Π½ΠΈΡ
ΡΠ°Π·ΠΌΠ΅ΡΠ°Ρ
ΡΠ°ΡΡΠ΅ΠΈΠ²Π°ΡΠ΅Π»Π΅ΠΉ, ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠ΅ΡΠΎΡ
ΠΎΠ²Π°ΡΠΎΡΡΠΈ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ, ΡΡΡΡΠΊΡΡΡΠ½ΡΡ
ΠΈ Π±ΠΈΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°Ρ
ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ (ΡΠ°ΡΡΠΈΡ) ΡΠΊΠ°Π½ΠΈ, Ρ ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ, ΠΈ ΠΎΠ± ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΡΡ
ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°Ρ
Π²ΡΠ΅ΠΉ ΡΠΎΠ»ΡΠΈ Π±ΠΈΠΎΡΠΊΠ°Π½ΠΈ, Ρ Π΄ΡΡΠ³ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ. Π¦Π΅Π»Ρ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ β ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ²ΡΠ·Π΅ΠΉ ΠΌΠ΅ΠΆΠ΄Ρ Π±ΠΈΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ ΡΡΡΡΠΊΡΡΡΠ½ΡΠΌΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ Π±ΠΈΠΎΡΠΊΠ°Π½ΠΈ ΠΈ ΡΠ²Π΅ΡΠΎΠ²ΡΠΌΠΈ ΠΏΠΎΠ»ΡΠΌΠΈ Π²Π½ΡΡΡΠΈ Π±ΠΈΠΎΡΠΊΠ°Π½Π΅ΠΉ.Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½Π°Ρ Π½Π°ΠΌΠΈ ΠΌΠΎΠ΄Π΅Π»Ρ ΡΡΠ΅Π΄Ρ Π΄Π°Π΅Ρ ΠΏΡΡΠΌΡΡ ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ Π±ΠΈΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ Π±ΠΈΠΎΡΠΊΠ°Π½ΠΈ. Π Π°ΡΡΠ΅ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ
ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠ° ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ, ΡΡΠΈΡΡΠ²Π°ΡΡΠΈΡ
ΠΌΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½ΡΡ ΡΡΡΡΠΊΡΡΡΡ Π±ΠΈΠΎΡΠΊΠ°Π½ΠΈ, ΠΌΠ½ΠΎΠ³ΠΎΠΊΡΠ°ΡΠ½ΠΎΠ΅ ΡΠ°ΡΡΠ΅ΡΠ½ΠΈΠ΅ Π² ΡΡΠ΅Π΄Π΅ ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΊΡΠ°ΡΠ½ΠΎΠ΅ ΠΏΠ΅ΡΠ΅ΠΎΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ»ΠΎΡΠΌΠΈ.Π‘ ΡΠΎΡΡΠΎΠΌ Π΄Π»ΠΈΠ½Ρ Π²ΠΎΠ»Π½Ρ ΡΠ°Π·ΠΌΠ΅Ρ ΡΠΏΠ΅ΠΊΠ»ΠΎΠ², ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΡΡ
Π½Π΅ΡΠ°ΡΡΠ΅ΡΠ½Π½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠΉ (ΠΏΡΡΠΌΠΎΠΉ ΡΠ²Π΅Ρ) Π»Π°Π·Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ, ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ Π² 2 ΡΠ°Π·Π° β ΠΎΡ 400 Π΄ΠΎ 800 ΠΌΠΊΠΌ Π² ΡΠΎΠ³ΠΎΠ²ΠΎΠΌ ΡΠ»ΠΎΠ΅, Π² 5 ΡΠ°Π· β ΠΎΡ 0,6 Π΄ΠΎ 3 ΠΌΠΊΠΌ Π΄Π»Ρ ΡΠΏΠΈΠ΄Π΅ΡΠΌΠΈΡΠ° ΠΈ ΠΎΡ 0,27 Π΄ΠΎ 1,4 ΠΌΠΊΠΌ Π΄Π»Ρ Π΄Π΅ΡΠΌΡ. Π’ΠΈΠΏΠΈΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² ΡΠΏΠ΅ΠΊΠ»ΠΎΠ², ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΡΡ
Π΄ΠΈΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠ΅ΠΉ Π»Π°Π·Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ, Π΄Π»Ρ ΡΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ»ΠΎΡ ΠΈ ΡΠΏΠΈΠ΄Π΅ΡΠΌΠΈΡΠ° Π½Π°Ρ
ΠΎΠ΄ΡΡΡΡ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΎΡ 0,02 Π΄ΠΎ 0,15 ΠΌΠΊΠΌ. ΠΠ»Ρ Π΄Π΅ΡΠΌΡ ΡΠΈΠΏΠΈΡΠ½ΡΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ ΡΠΏΠ΅ΠΊΠ»-ΠΏΡΡΠ½Π° ΡΠ°Π·ΠΌΠ΅ΡΠ°ΠΌΠΈ Π΄ΠΎ 0,03 ΠΌΠΊΠΌ. Π Π°Π·ΠΌΠ΅Ρ ΡΠΏΠ΅ΠΊΠ»-ΠΏΡΡΠ΅Π½ Π΄ΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠ΅ΠΉ Π² Π΄Π΅ΡΠΌΠ΅ Π²Π°ΡΡΠΈΡΡΠ΅ΡΡΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
ΠΎΡ Β±10 % ΠΏΡΠΈ 400 Π½ΠΌ ΠΈ Π΄ΠΎ Β±23 % Π΄Π»Ρ 800 Π½ΠΌ ΠΏΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΠ±ΡΠ΅ΠΌΠ½ΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΊΠ°ΠΏΠΈΠ»Π»ΡΡΠΎΠ² ΠΊΡΠΎΠ²ΠΈ. ΠΠΎΠ»ΡΡΠ΅Π½Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΈ ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½Ρ Π±ΠΈΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°ΠΊΡΠΎΡΡ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ Π±ΠΈΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ Π±ΠΈΠΎΡΠΊΠ°Π½ΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π²Π»ΠΈΡΡΡ Π½Π° ΠΊΠΎΠ½ΡΡΠ°ΡΡ ΡΠΏΠ΅ΠΊΠ»-ΡΡΡΡΠΊΡΡΡΡ Π² Π΄Π΅ΡΠΌΠ΅.ΠΠ½Π°ΡΠ΅Π½ΠΈΡ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² ΡΠΏΠ΅ΠΊΠ»ΠΎΠ² Π² ΡΠ»ΠΎΡΡ
Π±ΠΈΠΎΡΠΊΠ°Π½ΠΈ Π²Π°ΡΡΠΈΡΡΡΡΡΡ ΠΎΡ Π΄ΠΎΠ»Π΅ΠΉ ΠΌΠΈΠΊΡΠΎΠΌΠ΅ΡΡΠ° Π΄ΠΎ ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅ΡΡΠ°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½Π°Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π³Π»ΡΠ±ΠΈΠ½Ρ ΠΏΡΠΎΠ½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π² Π±ΠΈΠΎΡΠΊΠ°Π½Ρ, ΠΈΡΡ
ΠΎΠ΄Ρ ΠΈΠ· ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² ΡΠΏΠ΅ΠΊΠ»ΠΎΠ². Π Π°ΡΡΠ΅Ρ ΠΊΠΎΠ½ΡΡΠ°ΡΡΠ° ΡΠΏΠ΅ΠΊΠ»-ΡΡΡΡΠΊΡΡΡΡ ΡΠ°ΡΡΠ΅ΡΠ½Π½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π² Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΉ Π³Π»ΡΠ±ΠΈΠ½Π΅ Π² Π±ΠΈΠΎΡΠΊΠ°Π½ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΊΠΎΠ½ΡΡΠ°ΡΡΠ° ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠ΅Π½ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠ°ΡΡΠΈΠ½Ρ ΠΎΡ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΎΠΊΡΠΈΠ³Π΅Π½Π°ΡΠΈΠΈ ΠΊΡΠΎΠ²ΠΈ ΠΈ ΠΎΠ±ΡΠ΅ΠΌΠ½ΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΊΠ°ΠΏΠΈΠ»Π»ΡΡΠΎΠ² Π² Π΄Π΅ΡΠΌΠ΅
ΠΠΠ’ΠΠΠΠΠ ΠΠΠ ΠΠΠΠΠΠΠΠ― ΠΠΠͺΠΠΠΠΠ ΠΠΠΠ¦ΠΠΠ’Π ΠΠ¦ΠΠ ΠΠ ΠΠΠ ΠΠ ΠΠΠΠ’Π ΠΠ‘Π’Π£ ΠΠΠ’ΠΠ Π€ΠΠ ΠΠΠ¦ΠΠΠΠΠΠ ΠΠΠ Π’ΠΠΠ« ΠΠΠ£Π’Π Π ΠΠΠΠ’ΠΠΠΠ
The method of determining the volume concentration of blood in contrast of the interference pattern in biological tissues is developed and described. The estimation of measurement uncertainty is given.Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π° ΠΈ ΠΎΠΏΠΈΡΠ°Π½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΌΠ½ΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΊΡΠΎΠ²ΠΈ ΠΏΠΎ ΠΊΠΎΠ½ΡΡΠ°ΡΡΡ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠ΅Π½ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠ°ΡΡΠΈΠ½Ρ Π²Π½ΡΡΡΠΈ Π±ΠΈΠΎΡΠΊΠ°Π½ΠΈ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡΠ΅Π½ΠΊΠ° ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ
Π‘ΠΈΡΡΠ΅ΠΌΠ° ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΊΡΠΎΠ²ΠΎΡΠΎΠΊΠ° Π² ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ½ΡΡ ΡΠ»ΠΎΡΡ ΠΊΠΎΠΆΠ½ΡΡ ΠΏΠΎΠΊΡΠΎΠ²ΠΎΠ² ΠΏΠΎ ΡΠΏΠ΅ΠΊΠ»-ΡΡΡΡΠΊΡΡΡΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΠΊΡΠ°ΡΠ½ΠΎ ΡΠ°ΡΡΠ΅ΡΠ½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ
Assessment of the parameters of skin microcirculation is an urgent and important task of modern medicine in the development of methods for diagnosing diseases of the nervous system. The system for assessing the functional state of blood flow in the skin surface layers in the wavelength range from 400 to 850 nm has been improved based on the use of an extended mathematical model of the propagation of optical radiation in human skin by taking into account additional parameters: optical anisotropy of the skin, diameter and shape of erythrocytes in the dermis layer, blood pressure in the brachial artery in the range from 90/60 to 195/130 mmΞHg, plasma protein concentration in the blood (Ξ±1, Ξ±2, Ξ²1, Ξ²2, Ξ³-globulins and fibrinogen, g/l), rheological properties of blood flow with a diameter of blood vessels from 4.5 to 500 microns in the skin surface layers, skin temperature from +35 to +41 Β°C. The developed system makes it possible to determine the severity of microhemodynamic shifts in relation to metabolic disorders, improve diagnosis and evaluate the treatment efficacy of a number of neurological disorders; it also made it possible to reduce the patient examination time and increase the accuracy of measuring the blood flow microcirculation parameters by 10 % (linear and volumetric blood flow velocities) to detect blood flow disturbances in the surface layers of the skin in the normal and abnormal condition of the nervous system.ΠΡΠ΅Π½ΠΊΠ° ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΌΠΈΠΊΡΠΎΡΠΈΡΠΊΡΠ»ΡΡΠΈΠΈ ΠΊΠΎΠΆΠ½ΡΡ
ΠΏΠΎΠΊΡΠΎΠ²ΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΈ Π²Π°ΠΆΠ½ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Ρ ΠΏΡΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Π½Π΅ΡΠ²Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ. Π£ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½Π° ΡΠΈΡΡΠ΅ΠΌΠ° ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΊΡΠΎΠ²ΠΎΡΠΎΠΊΠ° Π² Π²Π΅ΡΡ
Π½ΠΈΡ
ΡΠ»ΠΎΡΡ
ΠΊΠΎΠΆΠΈ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π΄Π»ΠΈΠ½ Π²ΠΎΠ»Π½ ΠΎΡ 400 Π΄ΠΎ 850 Π½ΠΌ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΠ΅Π½Π½ΠΎΠΉ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΡ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π² ΠΊΠΎΠΆΠ΅ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Π·Π° ΡΡΠ΅Ρ ΡΡΠ΅ΡΠ° Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ²: ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°Π½ΠΈΠ·ΠΎΡΡΠΎΠΏΠΈΠΈ ΠΊΠΎΠΆΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΡΠΎΠ²Π°, Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠ° ΠΈ ΡΠΎΡΠΌΡ ΡΡΠΈΡΡΠΎΡΠΈΡΠΎΠ² Π² ΡΠ»ΠΎΠ΅ Π΄Π΅ΡΠΌΡ, Π°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ ΠΊΡΠΎΠ²ΠΈ Π² ΠΏΠ»Π΅ΡΠ΅Π²ΠΎΠΉ Π°ΡΡΠ΅ΡΠΈΠΈ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΎΡ 90/60 Π΄ΠΎ 195/130 ΠΌΠΌ ΡΡ. ΡΡ., ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ² ΠΏΠ»Π°Π·ΠΌΡ Π² ΠΊΡΠΎΠ²ΠΈ (Ξ±1, Ξ±2, Ξ²1, Ξ²2, Ξ³-Π³Π»ΠΎΠ±ΡΠ»ΠΈΠ½ΠΎΠ² ΠΈ ΡΠΈΠ±ΡΠΈΠ½ΠΎΠ³Π΅Π½Π°, Π³/Π»), ΡΠ΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΡΠΎΠ²ΠΈ ΠΏΡΠΈ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠ΅ ΠΊΡΠΎΠ²Π΅Π½ΠΎΡΠ½ΡΡ
ΡΠΎΡΡΠ΄ΠΎΠ² ΠΎΡ 4,5 Π΄ΠΎ 500 ΠΌΠΊΠΌ Π² ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΡΡ
ΡΠ»ΠΎΡΡ
ΠΊΠΎΠΆΠΈ, ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΊΠΎΠΆΠ½ΡΡ
ΠΏΠΎΠΊΡΠΎΠ²ΠΎΠ² ΠΎΡ +35 Π΄ΠΎ +41 Β°Π‘. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΡΡΡ ΠΌΠΈΠΊΡΠΎΠ³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΄Π²ΠΈΠ³ΠΎΠ² Π²ΠΎ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ Ρ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π½Π°ΡΡΡΠ΅Π½ΠΈΡΠΌΠΈ, ΡΠ»ΡΡΡΠΈΡΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΡ ΠΈ ΠΎΡΠ΅Π½ΠΈΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π»Π΅ΡΠ΅Π½ΠΈΡ ΡΡΠ΄Π° Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Π½Π΅ΡΠ²Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, ΡΠΎΠΊΡΠ°ΡΠΈΡΡ Π²ΡΠ΅ΠΌΡ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° ΠΈ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΡΠΎΡΠ½ΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΌΠΈΠΊΡΠΎΡΠΈΡΠΊΡΠ»ΡΡΠΈΠΈ ΠΊΡΠΎΠ²ΠΎΡΠΎΠΊΠ° Π½Π° 10 % (Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΈ ΠΎΠ±ΡΠ΅ΠΌΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ ΠΊΡΠΎΠ²ΠΎΡΠΎΠΊΠ°) Π΄Π»Ρ Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ ΠΊΡΠΎΠ²ΠΎΡΠΎΠΊΠ° Π² ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΡΡ
ΡΠ»ΠΎΡΡ
ΠΊΠΎΠΆΠΈ Π² Π½ΠΎΡΠΌΠ΅ ΠΈ ΠΏΡΠΈ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π΅ΡΠ²Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°
ΠΠΠ’ΠΠΠΠΠ ΠΠΠ ΠΠΠΠΠΠΠΠ― Π‘Π’ΠΠΠΠΠ ΠΠΠ‘ΠΠΠΠΠΠ¦ΠΠ ΠΠ ΠΠΠ ΠΠ ΠΠΠΠ’Π ΠΠ‘Π’Π£ ΠΠΠ’ΠΠ Π€ΠΠ ΠΠΠ¦ΠΠΠΠΠΠ ΠΠΠ Π’ΠΠΠ« ΠΠΠ£Π’Π Π ΠΠΠΠ’ΠΠΠΠ
On the basis of characteristics of the interference pattern formed by the repeatedly scattered light has been developed and described a method of determining the degree of blood oxygenation knowing the contrast of the interference pattern in biological tissues. The estimation of measurement uncertainty of developed technique and the ways to increase accuracy are shown. It demonstrates the possibility of solving the inverse problem of oxygenation using the contrast of the interference pattern.ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ°ΡΡΠ΅ΡΠ° Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠ΅Π½ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠ°ΡΡΠΈΠ½Ρ, ΡΠΎΡΠΌΠΈΡΡΠ΅ΠΌΠΎΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠΊΡΠ°ΡΠ½ΠΎ ΡΠ°ΡΡΠ΅ΡΠ½Π½ΡΠΌ ΡΠ²Π΅ΡΠΎΠΌ, ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π° ΠΈ ΠΎΠΏΠΈΡΠ°Π½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΎΠΊΡΠΈΠ³Π΅Π½Π°ΡΠΈΠΈ ΠΊΡΠΎΠ²ΠΈ ΠΏΠΎ ΠΊΠΎΠ½ΡΡΠ°ΡΡΡ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠ΅Π½ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠ°ΡΡΠΈΠ½Ρ Π²Π½ΡΡΡΠΈ Π±ΠΈΠΎΡΠΊΠ°Π½ΠΈ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡΠ΅Π½ΠΊΠ° ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΈ ΡΠΊΠ°Π·Π°Π½Ρ ΠΏΡΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΡΠΎΡΠ½ΠΎΡΡΠΈ
- β¦