37 research outputs found

    Experimental investigation of the effects of aft blowing with various nozzle exit geometries on a 3.0 caliber tangent ogive at high angles of attack: Forebody pressure distributions

    Get PDF
    An experimental study of the effects of aft blowing on the asymmetric vortex flow of a slender, axisymmetric body at high angles of attack was conducted. A 3.0 caliber tangent ogive body fitted with a cylindrical afterbody was tested in a wind tunnel under subsonic, laminar flow test conditions. Asymmetric blowing from both a single nozzle and a double nozzle configuration, positioned near the body apex, was studied. Aft blowing was observed to alter the vortex asymmetry by moving the blowing-side vortex closer to the body surface while moving the non-blowing-side vortex further away from the body. The effect of increasing the blowing coefficient was to move the blowing-side vortex closer to the body surface at a more upstream location. The data also showed that blowing was more effective in altering the initial vortex asymmetry at the higher angles of attack than at the lower. The effects of changing the nozzle exit geometry were studied and it was observed that blowing from a nozzle with a low, broad exit geometry was more effective in reducing the vortex asymmetry than blowing from a high, narrow exit geometry

    Effect of dimples on glancing shock wave turbulent boundary layer interactions

    Get PDF
    An experimental study has been conducted to examine the control effectiveness of dimples on the glancing shock wave turbulent boundary layer interaction produced by a series of hemi-cylindrically blunted fins at Mach numbers 0.8 and 1.4, and at angles of sweep 0°, 15°, 30° and 45°. Schlieren photography, oil flow, pressure sensitive paints, and pressure tappings were employed to examine the characteristics of the induced flow field. The passive control technique used a series of 2 mm diameter, 1 mm deep indents drilled across the hemi-cylindrical leading edge at angles 0°, 45° and 90°. The effects of dimples were highly dependent on their orientation relative to the leading edge apex, and the local boundary layer properties

    Effect of Dimples on Glancing Shock Wave-Turbulent Boundary Layer Interactions

    Full text link

    Incidence and predictors of hospital readmission in children presenting with severe anaemia in Uganda and Malawi: a secondary analysis of TRACT trial data

    Get PDF
    Background: Severe anaemia (haemoglobin < 6 g/dL) is a leading cause of recurrent hospitalisation in African children. We investigated predictors of readmission in children hospitalised with severe anaemia in the TRACT trial (ISRCTN84086586) in order to identify potential future interventions. Methods: Secondary analyses of the trial examined 3894 children from Uganda and Malawi surviving a hospital episode of severe anaemia. Predictors of all-cause readmission within 180 days of discharge were identified using multivariable regression with death as a competing risk. Groups of children with similar characteristics were identified using hierarchical clustering. Results: Of the 3894 survivors 682 (18%) were readmitted; 403 (10%) had ≥2 re-admissions over 180 days. Three main causes of readmission were identified: severe anaemia (n = 456), malaria (n = 252) and haemoglobinuria/dark urine syndrome (n = 165). Overall, factors increasing risk of readmission included HIV-infection (hazard ratio 2.48 (95% CI 1.63–3.78), p < 0.001); ≥2 hospital admissions in the preceding 12 months (1.44(1.19–1.74), p < 0.001); history of transfusion (1.48(1.13–1.93), p = 0.005); and missing ≥1 trial medication dose (proxy for care quality) (1.43 (1.21–1.69), p < 0.001). Children with uncomplicated severe anaemia (Hb 4-6 g/dL and no severity features), who never received a transfusion (per trial protocol) during the initial admission had a substantially lower risk of readmission (0.67(0.47–0.96), p = 0.04). Malaria (among children with no prior history of transfusion) (0.60(0.47–0.76), p < 0.001); younger-age (1.07 (1.03–1.10) per 1 year younger, p < 0.001) and known sickle cell disease (0.62(0.46–0.82), p = 0.001) also decreased risk of readmission. For anaemia re-admissions, gross splenomegaly and enlarged spleen increased risk by 1.73(1.23–2.44) and 1.46(1.18–1.82) respectively compared to no splenomegaly. Clustering identified four groups of children with readmission rates from 14 to 20%. The cluster with the highest readmission rate was characterised by very low haemoglobin (mean 3.6 g/dL). Sickle Cell Disease (SCD) predominated in two clusters associated with chronic repeated admissions or severe, acute presentations in largely undiagnosed SCD. The final cluster had high rates of malaria (78%), severity signs and very low platelet count, consistent with acute severe malaria. Conclusions: Younger age, HIV infection and history of previous hospital admissions predicted increased risk of readmission. However, no obvious clinical factors for intervention were identified. As missing medication doses was highly predictive, attention to care related factors may be important. Trial registration: ISRCTN ISRCTN84086586. Keywords: Severe anaemia, Readmissio

    A study of the passive effect on transonic shockwave/turbulent boundary layer interactions on porous surfaces

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:D60357 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    A preconditioned multigrid for simulation of atmospheric flow and wind turbine wakes

    No full text
    Due to copyright restrictions, the access to the full text of this article is only available via subscription.This paper demonstrates a low Mach number preconditioning formulation for high Reynolds number, low Mach number atmospheric flows. The preconditioning is implemented together with multigrid approach into a multistage solver in order to provide an efficient and robust all purpose solver to be used for the simulation of high Reynolds number viscous flows. Several modification and scaling of the preconditioned parameter are introduced to ensure robust use of the scheme for this particular flow regime in presence of stagnation points and seperation regions. The simulations results of standard cases of atmospheric flow over hilly terrain with attached and separated flow are presented to demonstrate the superior convergence, accuracy and robustness of the developed preconditioned scheme. An immersed wind turbine model is also developed and embedded into the preconditioned solver which allows for the simulations of far wake behind wind turbines in wind farms. The use of the immersed model reduces the stringent grid requirements of full RANS simulations around wind turbines and allows one to efficiently predict the wake evolution within wind farms

    The dynamics of the vorticity field in a low solidity axial turbine,” in ASME Turbo Expo,

    No full text
    ABSTRACT A current trend in turbomachinery design is the use of low solidity axial turbines that can generate a given power with fewer blades. However, due to the higher turning of the flow, relative to a high solidity turbine, there is an increase in secondary flows and their associated losses. In order to increase the efficiency of these more highly loaded stages, an improved understanding of the mechanisms related to the development, evolution and unsteady interaction of the secondary flows is required. An experimental investigation of the unsteady vorticity field in highly loaded stages of a research turbine is presented here. The research turbine facility is equipped with a two-stage axial turbine that is representative of the high-pressure section of a steam turbine. Steady and unsteady area measurements are performed, with the use of miniature pneumatic and fast response aerodynamic probes, in closely spaced planes at the exits of each blade row. In addition to the 3D total pressure flowfield, the multi-plane measurements allow the full three-dimensional time-resolved vorticity and velocity fields to be determined. These measurements are then used to describe the development, evolution and unsteady interaction of the secondary flows and loss generation. Particular emphasis is given to the vortex stretching term of the vorticity transport equation, which gives new insight into the vortex tilting and stretching that is associated with the secondary loss generation
    corecore