30,839 research outputs found

    Fibrillar templates and soft phases in systems with short-range dipolar and long-range interactions

    Full text link
    We analyze the thermal fluctuations of particles that have a short-range dipolar attraction and a long-range repulsion. In an inhomogeneous particle density region, or "soft phase," filamentary patterns appear which are destroyed only at very high temperatures. The filaments act as a fluctuating template for correlated percolation in which low-energy excitations can move through the stable pattern by local rearrangements. At intermediate temperatures, dynamically averaged checkerboard states appear. We discuss possible implications for cuprate superconducting and related materials.Comment: 4 pages, 4 postscript figures. Discussion of implications for experiment and theory has been expande

    Drivers of intrapopulation variation in resource use in a generalist predator, the macaroni penguin

    Get PDF
    Intrapopulation variation in resource use occurs in many populations of generalist predators with important community and evolutionary implications. One of the hypothesised mechanisms for such widespread variation is ecological opportunity, i.e. resource availability determined by intrinsic constraints and extrinsic conditions. We combined tracking data and stable isotope analysis to examine how breeding constraints and prey conditions influenced intrapopulation variation in resource use among macaroni penguins Eudyptes chrysolophus. Isotopic variation was also examined as a function of breeding success, individual traits and individual specialisation. Variation in isotope ratios was greatest across multiple tissue types when birds were able to undertake mid-range foraging trips (i.e. during incubation and pre-moult). This variation was highly consistent between years that spanned a 3-fold difference in local krill Euphausia superba density and was also highly consistent at the individual level between 2 years that had similar krill densities. However, by comparing our results with previous work on the same population, it appeared that a decrease in local prey availability can increase intrapopulation variation in resource use during periods with more restricted foraging ranges (i.e. during brood-guard and crèche). This study highlights the importance of considering ecological interactions that operate on multiple spatio-temporal scales when examining the drivers of resource use in populations of generalist predators

    An atomic clock with 10−1810^{-18} instability

    Full text link
    Atomic clocks have been transformational in science and technology, leading to innovations such as global positioning, advanced communications, and tests of fundamental constant variation. Next-generation optical atomic clocks can extend the capability of these timekeepers, where researchers have long aspired toward measurement precision at 1 part in 1018\bm{10^{18}}. This milestone will enable a second revolution of new timing applications such as relativistic geodesy, enhanced Earth- and space-based navigation and telescopy, and new tests on physics beyond the Standard Model. Here, we describe the development and operation of two optical lattice clocks, both utilizing spin-polarized, ultracold atomic ytterbium. A measurement comparing these systems demonstrates an unprecedented atomic clock instability of 1.6×10−18\bm{1.6\times 10^{-18}} after only 7\bm{7} hours of averaging

    Opioids Delay Healing of Spinal Fusion: A Rabbit Posterolateral Lumbar Fusion Model

    Get PDF
    Background Context Opioid use is prevalent in the management of pre- and postoperative pain in patients undergoing spinal fusion. There is evidence that opioids downregulate osteoblasts in vitro, and a previous study found that morphine delays the maturation and remodeling of callus in a rat femur fracture model. However, the effect of opioids on healing of spinal fusion has not been investigated before. Isolating the effect of opioid exposure in humans would be limited by the numerous confounding factors that affect fusion healing. Therefore, we have used a well-established rabbit model to study the process of spinal fusion healing that closely mimics humans. Purpose The objective of this work was to study the effect of systemic opioids on the process of healing of spinal fusion in a rabbit posterolateral spinal fusion model. Study Design/Setting This is a preclinical animal study. Materials and Methods Twenty-four adult New Zealand white rabbits were studied in two groups after approval from the Institutional Animal Care and Use Committee (IACUC). The opioid group (n=12) received 4 weeks\u27 preoperative and 6 weeks\u27 postoperative transdermal fentanyl. Serum fentanyl levels were measured just before surgery and 4 weeks postoperatively to ensure adequate levels. The control group (n=12) received only perioperative pain control as necessary. All animals underwent a bilateral L5–L6 posterolateral spinal fusion using iliac crest autograft. Animals were euthanized at the 6-week postoperative time point, and assessment of fusion was done by manual palpation, plain radiographs, microcomputed tomography (microCT), and histology. Results Twelve animals in the control group and 11 animals in the opioid group were available for analysis at the end of 6 weeks. The fusion scores on manual palpation, radiographs, and microCT were not statistically different. Three-dimensional microCT morphometry found that the fusion mass in the opioid group had a lower bone volume (p=.09), a lower trabecular number (p=.02), and a higher trabecular separation (p=.02) compared with the control group. Histologic analysis found areas of incorporation of autograft and unincorporated graft fragments in both groups. In the control group, there was remodeling of de novo woven bone to lamellar organization with incorporation of osteocytes, formation of mature marrow, and relative paucity of hypertrophied osteoblasts lining new bone. Sections from the opioid group showed formation of de novo woven bone, and hypertrophied osteoblasts were seen lining the new bone. There were no sections showing lamellar organization and development of mature marrow elements in the opioid group. Less dense trabeculae on microCT correlated with histologic findings of relatively immature fusion mass in the opioid group. Conclusions Systemic opioids led to an inferior quality fusion mass with delay in maturation and remodeling at 6 weeks in this rabbit spinal fusion model. These preliminary results lay the foundation for further research to investigate underlying cellular mechanisms, the temporal fusion process, and the dose-duration relationship of opioids responsible for our findings

    Coplanar Circumbinary Debris Disks

    Full text link
    We present resolved Herschel images of circumbinary debris disks in the alpha CrB (HD139006) and beta Tri (HD13161) systems. We find that both disks are consistent with being aligned with the binary orbital planes. Though secular perturbations from the binary can align the disk, in both cases the alignment time at the distances at which the disk is resolved is greater than the stellar age, so we conclude that the coplanarity was primordial. Neither disk can be modelled as a narrow ring, requiring extended radial distributions. To satisfy both the Herschel and mid-IR images of the alpha CrB disk, we construct a model that extends from 1-300AU, whose radial profile is broadly consistent with a picture where planetesimal collisions are excited by secular perturbations from the binary. However, this model is also consistent with stirring by other mechanisms, such as the formation of Pluto-sized objects. The beta Tri disk model extends from 50-400AU. A model with depleted (rather than empty) inner regions also reproduces the observations and is consistent with binary and other stirring mechanisms. As part of the modelling process, we find that the Herschel PACS beam varies by as much as 10% at 70um and a few % at 100um. The 70um variation can therefore hinder image interpretation, particularly for poorly resolved objects. The number of systems in which circumbinary debris disk orientations have been compared with the binary plane is now four. More systems are needed, but a picture in which disks around very close binaries (alpha CrB, beta Tri, and HD 98800, with periods of a few weeks to a year) are aligned, and disks around wider binaries (99 Her, with a 50 yr period) are misaligned, may be emerging. This picture is qualitatively consistent with the expectation that the protoplanetary disks from which the debris emerged are more likely to be aligned if their binaries have shorter periods.Comment: accepted to MNRA
    • …
    corecore