51 research outputs found

    Microscale characterization of prostate biopsies tissues using optical coherence elastography and second harmonic generation imaging

    Get PDF
    © 2018 USCAP, Inc All rights reserved. Photonics, especially optical coherence elastography (OCE) and second harmonic generation (SHG) imaging are novel high-resolution imaging modalities for characterization of biological tissues. Following our preliminary experience, we hypothesized that OCE and SHG imaging would delineate the microstructure of prostate tissue and aid in distinguishing cancer from the normal benign prostatic tissue. Furthermore, these approaches may assist in characterization of the grade of cancer, as well. In this study, we confirmed a high diagnostic accuracy of OCE and SHG imaging in the detection and characterization of prostate cancer for a large set of biopsy tissues obtained from men suspected to have prostate cancer using transrectal ultrasound (TRUS). The two techniques and methods described here are complementary, one depicts the stiffness of tissues and the other illustrates the orientation of collagen structure around the cancerous lesions. The results showed that stiffness of cancer tissue was ∼57.63% higher than that of benign tissue (Young's modulus of 698.43±125.29 kPa for cancerous tissue vs 443.07±88.95 kPa for benign tissue with OCE. Using histology as a reference standard and 600 kPa as a cut-off threshold, the data analysis showed sensitivity and specificity of 89.6 and 99.8%, respectively. Corresponding positive and negative predictive values were 99.5 and 94.6%, respectively. There was a significant difference noticed in terms of Young's modulus for different Gleason scores estimated by OCE (P-value<0.05). For SHG, distinct patterns of collagen distribution were seen for different Gleason grade disease with computed quantification employing a ratio of anisotropic to isotropic (A:I ratio) and this correlated with disease aggressiveness

    Quantitative Analysis of the Effect of Cancer Invasiveness and Collagen Concentration on 3D Matrix Remodeling

    Get PDF
    Extracellular matrix (ECM) remodeling is a key component of cell migration and tumor metastasis, and has been associated with cancer progression. Despite the importance of matrix remodeling, systematic and quantitative studies on the process have largely been lacking. Furthermore, it remains unclear if the disrupted tensional homeostasis characteristic of malignancy is due to initially altered ECM and tissue properties, or to the alteration of the tissue by tumor cells. To explore these questions, we studied matrix remodeling by two different prostate cancer cell lines in a three-dimensional collagen system. Over one week, we monitored structural changes in gels of varying collagen content using confocal reflection microscopy and quantitative image analysis, tracking metrics of fibril fraction, pore size, and fiber length and diameter. Gels that were seeded with no cells (control), LNCaP cells, and DU-145 cells were quantitatively compared. Gels with higher collagen content initially had smaller pore sizes and higher fibril fractions, as expected. However, over time, LNCaP- and DU-145-populated matrices showed different structural properties compared both to each other and to the control gels, with LNCaP cells appearing to favor microenvironments with lower collagen fiber fractions and larger pores than DU-145 cells. We posit that the DU-145 cells' preference for denser matrices is due to their higher invasiveness and proteolytic capabilities. Inhibition of matrix proteases resulted in reduced fibril fractions for high concentration gels seeded with either cell type, supporting our hypothesis. Our novel quantitative results probe the dynamics of gel remodeling in three dimensions and suggest that prostate cancer cells remodel their ECM in a synergistic manner that is dependent on both initial matrix properties as well as their invasiveness
    • …
    corecore