37 research outputs found

    The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic prĂŠcis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the <it>An. gambiae </it>complex. <it>Anopheles gambiae </it>is one of four DVS within the <it>An. gambiae </it>complex, the others being <it>An. arabiensis </it>and the coastal <it>An. merus </it>and <it>An. melas</it>. There are a further three, highly anthropophilic DVS in Africa, <it>An. funestus</it>, <it>An. moucheti </it>and <it>An. nili</it>. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed.</p> <p>Results</p> <p>A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method.</p> <p>Conclusions</p> <p>The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: <it>Anopheles </it>(<it>Cellia</it>) <it>arabiensis</it>, <it>An. </it>(<it>Cel.</it>) <it>funestus*</it>, <it>An. </it>(<it>Cel.</it>) <it>gambiae</it>, <it>An. </it>(<it>Cel.</it>) <it>melas</it>, <it>An. </it>(<it>Cel.</it>) <it>merus</it>, <it>An. </it>(<it>Cel.</it>) <it>moucheti </it>and <it>An. </it>(<it>Cel.</it>) <it>nili*</it>, and in the European and Middle Eastern Region: <it>An. </it>(<it>Anopheles</it>) <it>atroparvus</it>, <it>An. </it>(<it>Ano.</it>) <it>labranchiae</it>, <it>An. </it>(<it>Ano.</it>) <it>messeae</it>, <it>An. </it>(<it>Ano.</it>) <it>sacharovi</it>, <it>An. </it>(<it>Cel.</it>) <it>sergentii </it>and <it>An. </it>(<it>Cel.</it>) <it>superpictus*</it>. These maps are presented alongside a bionomics summary for each species relevant to its control.</p

    Effect of Fopius arisanus oviposition experience on parasitization of Bactrocera dorsalis.

    Get PDF
    Made available in DSpace on 2017-10-05T10:35:09Z (GMT). No. of bitstreams: 1 DoriBioControl.pdf: 411116 bytes, checksum: 2435ddd84fd2668a00c0cedd05745a2c (MD5) Previous issue date: 2017-10-04bitstream/item/164686/1/Dori-BioControl.pd

    Raspberry Ketone Trifluoroacetate Trapping of Zeugodacus cucurbitae (Diptera: Tephritidae)in Hawaii

    No full text
    Melon fly, Zeugodacus cucurbitae (Coquillett), is a serious pest of tropical horticulture, causing damage to cucurbits, other fruiting vegetables, and certain tree fruits. The deployment of male lures comprises an important component of several detection and control strategies for this pest, with the main male attractant currently in use being cuelure (CL). A novel fluorinated analog of CL, raspberry ketone trifluoroacetate (RKTA), has been developed for the control of Bactrocera tryoni, a related pest; here, we test this compound for attraction to Z. cucurbitae. In outdoor screen cage testing, observations showed both more flies on filter papers, and a higher percentage of flies feeding, on papers treated with RKTA than on those with CL or melolure (ML). Field trapping with both yellow sticky traps and bucket traps found that RKTA captured more flies during the first 6 h of trapping than CL, while trap captures in the subsequent 18 h did not differ between the two lures. When comparing combined 24 h trap captures, yellow sticky traps containing RKTA captured more flies than those with CL, while bucket trap captures did not vary by lure. Analysis of lures weathered on filter paper found that nearly all applied RKTA hydrolyzed to RK within 6 h. Fine-scale melon fly behaviors digitally recorded in the field showed median resting distances from the lure of responding flies were shorter for RKTA than for CL. This study demonstrates the inherent attractiveness of RKTA while also highlighting the instability of this compound due to hydrolysis
    corecore