93 research outputs found
Virulence and Pathogen Multiplication: A Serial Passage Experiment in the Hypervirulent Bacterial Insect-Pathogen Xenorhabdus nematophila
The trade-off hypothesis proposes that the evolution of pathogens' virulence is shaped by a link between virulence and contagiousness. This link is often assumed to come from the fact that pathogens are contagious only if they can reach high parasitic load in the infected host. In this paper we present an experimental test of the hypothesis that selection on fast replication can affect virulence. In a serial passage experiment, we selected 80 lines of the bacterial insect-pathogen Xenorhabdus nematophila to multiply fast in an artificial culture medium. This selection resulted in shortened lag phase in our selected bacteria. We then injected these bacteria into insects and observed an increase in virulence. This could be taken as a sign that virulence in Xenorhabdus is linked to fast multiplication. But we found, among the selected lineages, either no link or a positive correlation between lag duration and virulence: the most virulent bacteria were the last to start multiplying. We then surveyed phenotypes that are under the control of the flhDC super regulon, which has been shown to be involved in Xenorhabdus virulence. We found that, in one treatment, the flhDC regulon has evolved rapidly, but that the changes we observed were not connected to virulence. All together, these results indicate that virulence is, in Xenorhabdus as in many other pathogens, a multifactorial trait. Being able to grow fast is one way to be virulent. But other ways exist which renders the evolution of virulence hard to predict
Changing the Allocation Rules in the EU ETS: Impact on Competitiveness and Economic Efficiency
We assess five proposals for the future of the EU greenhouse gas Emission Trading Scheme (ETS): pure grandfathering allocation of emission allowances (GF), output-based allocation (OB), auctioning (AU), auctioning with border adjustments (AU-BA), and finally output-based allocation in sectors exposed to international competition combined with auctioning in electricity generation (OB-AU). We look at the impact on production, trade, CO2 leakage and welfare. We use a partial equilibrium model of the EU 27 featuring three sectors covered by the EU ETS - cement, steel and electricity - plus the aluminium sector, which is indirectly impacted through a rise in electricity price. The leakage ratio, i.e. the increase in emissions abroad over the decrease in EU emissions, ranges from around 8% under GF and AU to -2% under AU-BA and varies greatly among sectors. Concerning the overall economic cost, OB appears to be the least efficient policy, even when taking into account its ability to prevent CO2 leakage. On the other hand, this policy minimises production losses and wealth transfers among stakeholders, which is likely to soften oppositions. GF and AU are the most efficient policies from an EU perspective, even when leakage is accounted for. From a world welfare perspective and whatever the emission reduction, AU-BA is the least costly policy, while OB-AU, AU and GF entail similar costs
Toxines de nematodes entomoparasites. Pathogenicite de Steinernema carpocapsae. Perspectives d'application en genie genetique
National audienc
Swarming and Swimming Changes Concomitant with Phase Variation in Xenorhabdus nematophilus
Xenorhabdus spp., entomopathogenic bacteria symbiotically associated with nematodes of the family Steinernematidae, occur spontaneously in two phases. Phase I, the variant naturally isolated from the infective-stage nematode, provides better conditions than the phase II variant for nematode reproduction. This study has shown that Xenorhabdus phase I variants displayed a swarming motility when they were grown on a suitable solid medium (0.6 to 1.2% agar). Whereas most of the phase I variants from different Xenorhabdus spp. were able to undergo cycle of rapid and coordinately population migration over the surface, phase II variants were unable to swarm and even to swim in semisolid agar, particularly in X. nematophilus. Optical and electron microscopic observations showed nonmotile cells with phase II variants of X. nematophilus F1 which lost their flagella. Flagellar filaments from strain F1 phase I variants were purified, and the molecular mass of the flagellar structural subunit was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 36.5 kDa. Flagellin from cellular extracts or culture medium of phase II was undetectable with antiserum against the denatured flagellin by immunoblotting analysis. This suggests that the lack of flagella in phase II cells is due to a defect during flagellin synthesis. The importance of such a difference of motility between both phases is discussed in regard to adaptation of these bacteria to the insect prey and the nematode host
Biochemical Characterization and Agglutinating Properties of Xenorhabdus nematophilus F1 Fimbriae
Xenorhabdus spp., entomopathogenic bacteria symbiotically associated with nematodes of the family Steinernematidae, occur spontaneously in two phases. Only the phase I variants of Xenorhabdus nematophilus F1 expressed fimbriae when the bacteria were grown on a solid medium (nutrient agar; 24 and 48 h of growth). These appendages were purified and characterized. They were rigid, with a diameter of 6.4 (plusmn) 0.3 nm, and were composed of 16-kDa pilin subunits. The latter were synthesized and assembled during the first 24 h of growth. Phase II variants of X. nematophilus did not possess fimbriae and apparently did not synthesize pilin. Phase I variants of X. nematophilus have an agglutinating activity with sheep, rabbit, and human erythrocytes and with hemocytes of the insect Galleria mellonella. The purified fimbriae agglutinated sheep and rabbit erythrocytes. The hemagglutination by bacteria and purified fimbriae was mannose resistant and was inhibited by porcine gastric mucin and N-acetyl-lactosamine. The last sugar seems to be a specific inhibitor of hemagglutination by X. nematophilus
- …