1,707 research outputs found

    Invariant description of solutions of hydrodynamic type systems in hodograph space: hydrodynamic surfaces

    Full text link
    Hydrodynamic surfaces are solutions of hydrodynamic type systems viewed as non-parametrized submanifolds of the hodograph space. We propose an invariant differential-geometric characterization of hydrodynamic surfaces by expressing the curvature form of the characteristic web in terms of the reciprocal invariants.Comment: 12 page

    The model equation of soliton theory

    Full text link
    We consider an hierarchy of integrable 1+2-dimensional equations related to Lie algebra of the vector fields on the line. The solutions in quadratures are constructed depending on nn arbitrary functions of one argument. The most interesting result is the simple equation for the generating function of the hierarchy which defines the dynamics for the negative times and also has applications to the second order spectral problems. A rather general theory of integrable 1+1-dimensional equations can be developed by study of polynomial solutions of this equation under condition of regularity of the corresponding potentials.Comment: 17

    Ordinary differential equations which linearize on differentiation

    Full text link
    In this short note we discuss ordinary differential equations which linearize upon one (or more) differentiations. Although the subject is fairly elementary, equations of this type arise naturally in the context of integrable systems.Comment: 9 page

    Towards a theory of differential constraints of a hydrodynamic hierarchy

    Get PDF
    We present a theory of compatible differential constraints of a hydrodynamic hierarchy of infinite-dimensional systems. It provides a convenient point of view for studying and formulating integrability properties and it reveals some hidden structures of the theory of integrable systems. Illustrative examples and new integrable models are exhibited.Comment: Published by JNMP at http://www.sm.luth.se/math/JNMP

    Classification of integrable two-component Hamiltonian systems of hydrodynamic type in 2+1 dimensions

    Full text link
    Hamiltonian systems of hydrodynamic type occur in a wide range of applications including fluid dynamics, the Whitham averaging procedure and the theory of Frobenius manifolds. In 1+1 dimensions, the requirement of the integrability of such systems by the generalised hodograph transform implies that integrable Hamiltonians depend on a certain number of arbitrary functions of two variables. On the contrary, in 2+1 dimensions the requirement of the integrability by the method of hydrodynamic reductions, which is a natural analogue of the generalised hodograph transform in higher dimensions, leads to finite-dimensional moduli spaces of integrable Hamiltonians. In this paper we classify integrable two-component Hamiltonian systems of hydrodynamic type for all existing classes of differential-geometric Poisson brackets in 2D, establishing a parametrisation of integrable Hamiltonians via elliptic/hypergeometric functions. Our approach is based on the Godunov-type representation of Hamiltonian systems, and utilises a novel construction of Godunov's systems in terms of generalised hypergeometric functions.Comment: Latex, 34 page

    On a class of second-order PDEs admitting partner symmetries

    Full text link
    Recently we have demonstrated how to use partner symmetries for obtaining noninvariant solutions of heavenly equations of Plebanski that govern heavenly gravitational metrics. In this paper, we present a class of scalar second-order PDEs with four variables, that possess partner symmetries and contain only second derivatives of the unknown. We present a general form of such a PDE together with recursion relations between partner symmetries. This general PDE is transformed to several simplest canonical forms containing the two heavenly equations of Plebanski among them and two other nonlinear equations which we call mixed heavenly equation and asymmetric heavenly equation. On an example of the mixed heavenly equation, we show how to use partner symmetries for obtaining noninvariant solutions of PDEs by a lift from invariant solutions. Finally, we present Ricci-flat self-dual metrics governed by solutions of the mixed heavenly equation and its Legendre transform.Comment: LaTeX2e, 26 pages. The contents change: Exact noninvariant solutions of the Legendre transformed mixed heavenly equation and Ricci-flat metrics governed by solutions of this equation are added. Eq. (6.10) on p. 14 is correcte

    Weakly-nonlocal Symplectic Structures, Whitham method, and weakly-nonlocal Symplectic Structures of Hydrodynamic Type

    Full text link
    We consider the special type of the field-theoretical Symplectic structures called weakly nonlocal. The structures of this type are in particular very common for the integrable systems like KdV or NLS. We introduce here the special class of the weakly nonlocal Symplectic structures which we call the weakly nonlocal Symplectic structures of Hydrodynamic Type. We investigate then the connection of such structures with the Whitham averaging method and propose the procedure of "averaging" of the weakly nonlocal Symplectic structures. The averaging procedure gives the weakly nonlocal Symplectic Structure of Hydrodynamic Type for the corresponding Whitham system. The procedure gives also the "action variables" corresponding to the wave numbers of mm-phase solutions of initial system which give the additional conservation laws for the Whitham system.Comment: 64 pages, Late

    Solutions of the sDiff(2)Toda equation with SU(2) Symmetry

    Full text link
    We present the general solution to the Plebanski equation for an H-space that admits Killing vectors for an entire SU(2) of symmetries, which is therefore also the general solution of the sDiff(2)Toda equation that allows these symmetries. Desiring these solutions as a bridge toward the future for yet more general solutions of the sDiff(2)Toda equation, we generalize the earlier work of Olivier, on the Atiyah-Hitchin metric, and re-formulate work of Babich and Korotkin, and Tod, on the Bianchi IX approach to a metric with an SU(2) of symmetries. We also give careful delineations of the conformal transformations required to ensure that a metric of Bianchi IX type has zero Ricci tensor, so that it is a self-dual, vacuum solution of the complex-valued version of Einstein's equations, as appropriate for the original Plebanski equation.Comment: 27 page

    Laplace Invariants for General Hyperbolic Systems

    Full text link
    We consider the generalization of Laplace invariants to linear differential systems of arbitrary rank and dimension. We discuss completeness of certain subsets of invariants

    Laplace transformations of hydrodynamic type systems in Riemann invariants: periodic sequences

    Full text link
    The conserved densities of hydrodynamic type system in Riemann invariants satisfy a system of linear second order partial differential equations. For linear systems of this type Darboux introduced Laplace transformations, generalising the classical transformations in the scalar case. It is demonstrated that Laplace transformations can be pulled back to the transformations of the corresponding hydrodynamic type systems. We discuss periodic Laplace sequences of with the emphasize on the simplest nontrivial case of period 2. For 3-component systems in Riemann invariants a complete discription of closed quadruples is proposed. They turn to be related to a special quadratic reduction of the (2+1)-dimensional 3-wave system which can be reduced to a triple of pairwize commuting Monge-Ampere equations. In terms of the Lame and rotation coefficients Laplace transformations have a natural interpretation as the symmetries of the Dirac operator, associated with the (2+1)-dimensional n-wave system. The 2-component Laplace transformations can be interpreted also as the symmetries of the (2+1)-dimensional integrable equations of Davey-Stewartson type. Laplace transformations of hydrodynamic type systems originate from a canonical geometric correspondence between systems of conservation laws and line congruences in projective space.Comment: 22 pages, Late
    corecore