1,257 research outputs found
Writ large: Genomic dissection of the effect of cellular environment on immune response
Cells of the immune system routinely respond to cues from their local environment and feed back to their surroundings through transient responses, choice of differentiation trajectories, plastic changes in cell state, and malleable adaptation to their tissue of residence. Genomic approaches have opened the way for comprehensive interrogation of such orchestrated responses. Focusing on genomic profiling of transcriptional and epigenetic cell states, we discuss how they are applied to investigate immune cells faced with various environmental cues. We highlight some of the emerging principles on the role of dense regulatory circuitry, epigenetic memory, cell type fluidity, and reuse of regulatory modules in achieving and maintaining appropriate responses to a changing environment.These provide a first step toward a systematic understanding of molecular circuits in complex tissues
Evaluating the accuracy of diffusion MRI models in white matter
Models of diffusion MRI within a voxel are useful for making inferences about
the properties of the tissue and inferring fiber orientation distribution used
by tractography algorithms. A useful model must fit the data accurately.
However, evaluations of model-accuracy of some of the models that are commonly
used in analyzing human white matter have not been published before. Here, we
evaluate model-accuracy of the two main classes of diffusion MRI models. The
diffusion tensor model (DTM) summarizes diffusion as a 3-dimensional Gaussian
distribution. Sparse fascicle models (SFM) summarize the signal as a linear sum
of signals originating from a collection of fascicles oriented in different
directions. We use cross-validation to assess model-accuracy at different
gradient amplitudes (b-values) throughout the white matter. Specifically, we
fit each model to all the white matter voxels in one data set and then use the
model to predict a second, independent data set. This is the first evaluation
of model-accuracy of these models. In most of the white matter the DTM predicts
the data more accurately than test-retest reliability; SFM model-accuracy is
higher than test-retest reliability and also higher than the DTM, particularly
for measurements with (a) a b-value above 1000 in locations containing fiber
crossings, and (b) in the regions of the brain surrounding the optic
radiations. The SFM also has better parameter-validity: it more accurately
estimates the fiber orientation distribution function (fODF) in each voxel,
which is useful for fiber tracking
AM-FFF of Objects Using Commercial PLA Based Shape Memory Polymer Printed by an Open-Source 3D Printer
The 4D additive manufacturing processes are considered today as the "next big thing" in R&D. The aim of this research is to provide two examples of commercial PLA based shape memory polymer (SMP) objects printed on an open-source 3D printer in order to proof the feasibility of such novel 4D printing process. To that purpose, a PLA based filament of eSUN (4D filament e4D-1​white, SMP) was chosen, and two applications, a spring and a vase, were designed by 3D-printing with additive manufacturing (AM) fused filament fabrication (FFF) technique. The 4D-printed objects were successfully produced, the shape memory effect and their functionality were demonstrated by achieving the shape-memory cycle of programming, storage and recovery
Chiral Anomaly and
Measurement of the process has revealed a possible conflict
with what should be a solid prediction generated by the chiral anomaly. We show
that inclusion of appropirate energy-momentum dependence in the matrix element
reduces the discrepancy.Comment: 8 page standard Latex fil
Dynamical Generation of Extended Objects in a Dimensional Chiral Field Theory: Non-Perturbative Dirac Operator Resolvent Analysis
We analyze the dimensional Nambu-Jona-Lasinio model non-perturbatively.
In addition to its simple ground state saddle points, the effective action of
this model has a rich collection of non-trivial saddle points in which the
composite fields \sigx=\lag\bar\psi\psi\rag and \pix=\lag\bar\psi
i\gam_5\psi\rag form static space dependent configurations because of
non-trivial dynamics. These configurations may be viewed as one dimensional
chiral bags that trap the original fermions (``quarks") into stable extended
entities (``hadrons"). We provide explicit expressions for the profiles of
these objects and calculate their masses. Our analysis of these saddle points
is based on an explicit representation we find for the diagonal resolvent of
the Dirac operator in a \{\sigx, \pix\} background which produces a
prescribed number of bound states. We analyse in detail the cases of a single
as well as two bound states. We find that bags that trap fermions are the
most stable ones, because they release all the fermion rest mass as binding
energy and become massless. Our explicit construction of the diagonal resolvent
is based on elementary Sturm-Liouville theory and simple dimensional analysis
and does not depend on the large approximation. These facts make it, in our
view, simpler and more direct than the calculations previously done by Shei,
using the inverse scattering method following Dashen, Hasslacher, and Neveu.
Our method of finding such non-trivial static configurations may be applied to
other dimensional field theories
Selected Applications of Stimuli-Responsive Polymers: 4D Printing by the Fused Filament Fabrication Technology
In the past few years four-dimensional (4D) printing technologies have attained worldwide interest and they are now considered the "next big thing". The aim of this research is to provide three selected examples of stimuli-responsive polymer (SRP) applications additively manufactured (AM) by the fused filament fabrication (FFF) technique. To that end, a CCT BLUE filament of thermo-responsive polymer was chosen to produce a water temperature indicator, which changes colour from blue to white when temperature increases; a CCU RED filament of photo-responsive polymer was used to produce a sunlight / UV indicator bracelet; a transparent PLA CLEAR polymer, a CCU RED photo-responsive polymer, and an electrical conductive PLA polymer were selected to produce a smart business card stand. The temperature indicator capability was analysed based on examining colour changes as a function of temperature changes. The sunlight/UV indicator capability was analysed based on the inspection of colour change as a function of absorbed sun/ultraviolet light. The electrical conductivity of the conductive PLA polymer was examined by performing resistance measurements. All three objects were successfully produced and their functionality was demonstrated. We hope that these examples will catalyse the expansion of FFF 4D printed SRP applications, as much work remains to be done in designing the parts and developing FFF printing parameters that take advantage of the stimuli-responsive materials currently being developed for FFF technology
Is telomere length in peripheral blood lymphocytes correlated with cancer susceptibility or radiosensitivity?
Mean terminal restriction fragment (TRF) lengths in white blood cells (WBCs) have been previously found to be associated with breast cancer. To assess whether this marker could be used as a test for breast cancer susceptibility in women, TRF length was measured in 72 treated female breast cancer patients and 1696 unaffected female controls between the ages of 45 and 77 from the Twin Research Unit at St Thomas' Hospital, as well as 140 newly diagnosed breast cancer cases and 108 mammographically screened unaffected controls from Guy's Hospital. Mean TRF was also tested for correlation with chromosome radiosensitivity and apoptotic response in the Guy's Hospital patients. After adjusting for age, smoking and body mass index, there was no significant difference in TRF lengths between the treated breast cancer patients and unaffected controls (P=0.71). A positive correlation between age-adjusted apoptotic response and mean TRF in newly diagnosed untreated breast cancer patients (P=0.008) was identified but no significant difference in TRF lengths between breast cancer patients and unaffected controls was detected (P=0.53). This suggests that TRF lengths in WBC, is not a marker of breast cancer susceptibility and does not vary significantly between affected women before and after treatment
Study of below 1 GeV using Integral Equation Approach
The scattering of is studied using the axial
anomaly, elastic unitarity, analyticity and crossing symmetry. Using the
technique to derive the Roy's equation, an integral equation for the P-wave
amplitude is obtained in terms of the strong P-wave pion pion phase shifts. Its
solution is obtained numerically by an iteration procedure using the starting
point as the solution of the integral equation of the Muskelshsvilli-Omnes
type. It is, however, ambiguous and depends sensitively on the second
derivative of the P-wave amplitude at which cannot directly be
measured.Comment: 26 pages, 10 figure
- …