17 research outputs found

    Micromechanical analysis of influence of voids and interface properties on ultimate strength of composite laminates

    Get PDF
    The influence of fiber-matrix interface fracture properties, fiber waviness, and voids on the response of fiber-reinforced composites are investigated in this paper via three dimensional finite element analysis. We specifically employ augmented finite element method (AFEM) to provide high-fidelity data on damage initiation and propagation along with micromechanical analysis. Stochastic process of model preparation is programmed in Python code and linked to the Abaqus software. Crack initiation and propagation in AFEM are autonomously determined based on the loading conditions, laminate configuration and properties, and distribution of defects and waviness. Within micromechanical analysis, the effects of fiber volume fractions, fiber shapes are also considered to capture the stochastic behavior of the composite under tensile loading. In order to investigate the effects of voids and defects on ultimate strength of composite, we carry out simulations with random voids and defects. These results strongly show the importance of including defects and voids in the finite element analysis. The results reveal that the response of RVE with constant interface properties overestimates the composite transverse strength. It is also seen that the damage initiation and propagation locations are controlled by the distributions of fracture properties, fibers’ shapes, and defects

    Low-Velocity Impact Response of Sandwich Beams with Functionally Graded Core

    Get PDF
    The problem of low-speed impact of a one-dimensional sandwich panel by a rigid cylindrical projectile is considered. The core of the sandwich panel is functionally graded such that the density, and hence its stiffness, vary through the thickness. The problem is a combination of static contact problem and dynamic response of the sandwich panel obtained via a simple nonlinear spring-mass model (quasi-static approximation). The variation of core Young's modulus is represented by a polynomial in the thickness coordinate, but the Poisson's ratio is kept constant. The two-dimensional elasticity equations for the plane sandwich structure are solved using a combination of Fourier series and Galerkin method. The contact problem is solved using the assumed contact stress distribution method. For the impact problem we used a simple dynamic model based on quasi-static behavior of the panel - the sandwich beam was modeled as a combination of two springs, a linear spring to account for the global deflection and a nonlinear spring to represent the local indentation effects. Results indicate that the contact stiffness of thc beam with graded core Increases causing the contact stresses and other stress components in the vicinity of contact to increase. However, the values of maximum strains corresponding to the maximum impact load arc reduced considerably due to grading of thc core properties. For a better comparison, the thickness of the functionally graded cores was chosen such that the flexural stiffness was equal to that of a beam with homogeneous core. The results indicate that functionally graded cores can be used effectively to mitigate or completely prevent impact damage in sandwich composites

    Spectral and perturbation analysis of first-order beams with notch damage

    No full text
    The influence of damage on waves propagating in beam structures is investigated through a numerical model formulated by combining spectral finite elements and perturbation techniques. The resulting numerical tool allows for an efficient computation of the wave propagation response and the analysis of the effects of localized damages of various extents and locations. The dynamic behavior of damaged beams is described through a first-order model, which couples bending and axial behavior, thus allowing the prediction of mode conversion phenomena. Damage is modeled as a small, localized reduction of the beam thickness which, allows for an application of perturbation theory. Numerical examples in the time and frequency domains are presented to illustrate the model capabilities

    Spectral and Perturbation Analysis of First-Order Beams With Notch Damage

    No full text
    The influence of damage on waves propagating in beam structures is investigated through a numerical model formulated by combining spectral finite elements and perturbation techniques. The resulting numerical tool allows for an efficient computation of the wave propagation response and the analysis of the effects of localized damages of various extents and locations. The dynamic behavior of damaged beams is described through a first-order model, which couples bending and axial behavior, thus allowing the prediction of mode conversion phenomena. Damage is modeled as a small, localized reduction of the beam thickness which, allows for an application of perturbation theory. Numerical examples in the time and frequency domains are presented to illustrate the model capabilities

    Perturbation technique for wave propagation analysis in a notched beam using wavelet spectral element modeling

    No full text
    In this paper, spectral finite element is formulated for an Euler-Bernoulli beam with through-width notch type defect. In spectral finite element modeling, exact shape functions are derived and finite element procedure is followed in the transformed frequency domain. Here spectral finite element formulation is done using Daubechies scaling function bases for temporal approximation. In comparison to the conventional Fourier transform based spectral finite element method, the use of localized bases functions in the Daubechies scaling function based spectral finite element method allows accurate wave propagation analysis of finite length structures. The wave propagation response of the damaged beam is considered as a perturbation of the undamaged beam response within the restriction of small damage. First, numerical experiments are performed with narrow banded modulated pulse loading to obtain the location of damage from wave arrival time. Next, a broad banded impulse load is considered and effects of parameters like damage width, depth, and location on the responses are studied in time and frequency domains
    corecore