1,551 research outputs found

    Response to Letter to the Editor: ‘India ink and cartilage’

    Get PDF

    P160 Occurrence and patterns of meniscus damage following ACL transection

    Get PDF

    Increase in degraded collagen type II in synovial fluid early in the rabbit meniscectomy model of osteoarthritis

    Get PDF
    SummaryObjectiveThe objective of this study was to determine whether collagen type II breakdown products in synovial fluid (SF), detected by an enzyme-linked immunoassay, represent a useful marker for early events in osteoarthritis (OA) in the rabbit medial meniscectomy model.DesignComplete medial meniscectomy was performed on the right knee joints of 32 rabbits. Balanced groups of rabbits were then sacrificed at 2, 4, 8, and 12 weeks post-surgery. An additional 8 unoperated and 11 sham-operated animals served as controls. SF lavages were performed on right and left knee joints of the same animals at sacrifice. The proteolytic epitope of type II collagen was monitored using an enzyme-linked immunoassay.ResultsMacroscopically visible surface fibrillation and focal erosions appeared as early as 2 weeks after meniscectomy in the femorotibial joint (P<0.01). OA developed gradually during the later observation period, and then predominantly on the medial tibial plateau and medial femur. Significant histological alterations in cartilage, including a loss of proteoglycans, surface irregularities, and clefts, were detected at 2 weeks after meniscectomy (P<0.01). Collagen type II epitope levels in SF lavage samples were elevated peaking at 2 weeks after meniscectomy (P<0.02). Levels decreased at later time points, but they were still raised at 12 weeks (P≤0.05). Highly significant correlations were found between the SF collagen type II epitope levels and the macroscopic and microscopic scoring results (Spearman rho correlation coefficient, macroscopy—collagen type II epitope r=0.222, P=0.025; microscopy—collagen type II epitope r=0.436, P≤0.01).ConclusionIn this rabbit model of medial meniscectomy, levels of type II collagen fragments in SF appear to provide a useful marker of the early degenerative changes

    Porous silicon bulk acoustic wave resonator with integrated transducer

    Get PDF
    We report that porous silicon acoustic Bragg reflectors and AlN-based transducers can be successfully combined and processed in a commercial solidly mounted resonator production line. The resulting device takes advantage of the unique acoustic properties of porous silicon in order to form a monolithically integrated bulk acoustic wave resonator

    Relations between M\"obius and coboundary polynomial

    Get PDF
    It is known that, in general, the coboundary polynomial and the M\"obius polynomial of a matroid do not determine each other. Less is known about more specific cases. In this paper, we will try to answer if it is possible that the M\"obius polynomial of a matroid, together with the M\"obius polynomial of the dual matroid, define the coboundary polynomial of the matroid. In some cases, the answer is affirmative, and we will give two constructions to determine the coboundary polynomial in these cases.Comment: 12 page

    Cluster density functional theory for lattice models based on the theory of Mobius functions

    Full text link
    Rosenfeld's fundamental measure theory for lattice models is given a rigorous formulation in terms of the theory of Mobius functions of partially ordered sets. The free-energy density functional is expressed as an expansion in a finite set of lattice clusters. This set is endowed a partial order, so that the coefficients of the cluster expansion are connected to its Mobius function. Because of this, it is rigorously proven that a unique such expansion exists for any lattice model. The low-density analysis of the free-energy functional motivates a redefinition of the basic clusters (zero-dimensional cavities) which guarantees a correct zero-density limit of the pair and triplet direct correlation functions. This new definition extends Rosenfeld's theory to lattice model with any kind of short-range interaction (repulsive or attractive, hard or soft, one- or multi-component...). Finally, a proof is given that these functionals have a consistent dimensional reduction, i.e. the functional for dimension d' can be obtained from that for dimension d (d'<d) if the latter is evaluated at a density profile confined to a d'-dimensional subset.Comment: 21 pages, 2 figures, uses iopart.cls, as well as diagrams.sty (included

    volumetric characterisation and correlation to established classification systems

    Get PDF
    Objective and sensitive assessment of cartilage repair outcomes lacks suitable methods. This study investigated the feasibility of 3D ultrasound biomicroscopy (UBM) to quantify cartilage repair outcomes volumetrically and their correlation with established classification systems. 32 sheep underwent bilateral treatment of a focal cartilage defect. One or two years post- operatively the repair outcomes were assessed and scored macroscopically (Outerbridge, ICRS-CRA), by magnetic resonance imaging (MRI, MOCART), and histopathology (O'Driscoll, ICRS-I and ICRS-II). The UBM data were acquired after MRI and used to reconstruct the shape of the initial cartilage layer, enabling the estimation of the initial cartilage thickness and defect volume as well as volumetric parameters for defect filling, repair tissue, bone loss and bone overgrowth. The quantification of the repair outcomes revealed high variations in the initial thickness of the cartilage layer, indicating the need for cartilage thickness estimation before creating a defect. Furthermore, highly significant correlations were found for the defect filling estimated from UBM to the established classification systems. 3D visualisation of the repair regions showed highly variable morphology within single samples. This raises the question as to whether macroscopic, MRI and histopathological scoring provide sufficient reliability. The biases of the individual methods will be discussed within this context. UBM was shown to be a feasible tool to evaluate cartilage repair outcomes, whereby the most important objective parameter is the defect filling. Translation of UBM into arthroscopic or transcutaneous ultrasound examinations would allow non-destructive and objective follow-up of individual patients and better comparison between the results of clinical trials

    Future directions for the management of pain in osteoarthritis.

    Get PDF
    Osteoarthritis (OA) is the predominant form of arthritis worldwide, resulting in a high degree of functional impairment and reduced quality of life owing to chronic pain. To date, there are no treatments that are known to modify disease progression of OA in the long term. Current treatments are largely based on the modulation of pain, including NSAIDs, opiates and, more recently, centrally acting pharmacotherapies to avert pain. This review will focus on the rationale for new avenues in pain modulation, including inhibition with anti-NGF antibodies and centrally acting analgesics. The authors also consider the potential for structure modification in cartilage/bone using growth factors and stem cell therapies. The possible mismatch between structural change and pain perception will also be discussed, introducing recent techniques that may assist in improved patient phenotyping of pain subsets in OA. Such developments could help further stratify subgroups and treatments for people with OA in future
    corecore