7,521 research outputs found

    DNA-psoralen: single-molecule experiments and first principles calculations

    Full text link
    The authors measure the persistence and contour lengths of DNA-psoralen complexes, as a function of psoralen concentration, for intercalated and crosslinked complexes. In both cases, the persistence length monotonically increases until a certain critical concentration is reached, above which it abruptly decreases and remains approximately constant. The contour length of the complexes exhibits no such discontinuous behavior. By fitting the relative increase of the contour length to the neighbor exclusion model, we obtain the exclusion number and the intrinsic intercalating constant of the psoralen-DNA interaction. Ab initio calculations are employed in order to provide an atomistic picture of these experimental findings.Comment: 9 pages, 4 figures in re-print format 3 pages, 4 figures in the published versio

    Dynamical demixing of a binary mixture under sedimentation

    Full text link
    We investigate the sedimentation dynamics of a binary mixture, the species of which differ by their Stokes coefficients but are identical otherwise. We analyze the sedimentation dynamics and the morphology of the final deposits using Brownian dynamics simulations for mixtures with a range of sedimentation velocities of both species. We found a threshold in the sedimentation velocities difference above which the species in the final deposit are segregated. The degree of segregation increases with the difference in the Stokes coefficients or the sedimentation velocities above the threshold. We propose a simple mean-field model that captures the main features of the simulated deposits

    Benchmark on neutron capture extracted from (d,p)(d,p) reactions

    Get PDF
    Direct neutron capture reactions play an important role in nuclear astrophysics and applied physics. Since for most unstable short-lived nuclei it is not possible to measure the (n,Îł)(n, \gamma) cross sections, (d,p)(d,p) reactions have been used as an alternative indirect tool. We analyze simultaneously 48Ca(d,p)49Ca^{48}{\rm Ca}(d,p)^{49}{\rm Ca} at deuteron energies 2,13,192, 13, 19 and 56 MeV and the thermal (n,Îł)(n,\gamma) reaction at 25 meV. We include results for the ground state and the first excited state of 49^{49}Ca. From the low-energy (d,p)(d,p) reaction, the neutron asymptotic normalization coefficient (ANC) is determined. Using this ANC, we extract the spectroscopic factor (SF) from the higher energy (d,p)(d,p) data and the (n,Îł)(n, \gamma) data. The SF obtained through the 56 MeV (d,p)(d,p) data are less accurate but consistent with those from the thermal capture. We show that to have a similar dependence on the single particle parameters as in the (n,Îł)(n, \gamma), the (d,p) reaction should be measured at 30 MeV.Comment: 5 pg, 4 figs, Phys. Rev. C (rapid) in pres

    Probing dark energy beyond z=2z=2 with CODEX

    Full text link
    Precision measurements of nature's fundamental couplings and a first measurement of the cosmological redshift drift are two of the key targets for future high-resolution ultra-stable spectrographs such as CODEX. Being able to do both gives CODEX a unique advantage, allowing it to probe dynamical dark energy models (by measuring the behavior of their equation of state) deep in the matter era and thereby testing classes of models that would otherwise be difficult to distinguish from the standard Λ\LambdaCDM paradigm. We illustrate this point with two simple case studies.Comment: 4 pages, 4 figures; submitted to Phys. Rev.

    Fluctuations and oscillations in a simple epidemic model

    Full text link
    We show that the simplest stochastic epidemiological models with spatial correlations exhibit two types of oscillatory behaviour in the endemic phase. In a large parameter range, the oscillations are due to resonant amplification of stochastic fluctuations, a general mechanism first reported for predator-prey dynamics. In a narrow range of parameters that includes many infectious diseases which confer long lasting immunity the oscillations persist for infinite populations. This effect is apparent in simulations of the stochastic process in systems of variable size, and can be understood from the phase diagram of the deterministic pair approximation equations. The two mechanisms combined play a central role in explaining the ubiquity of oscillatory behaviour in real data and in simulation results of epidemic and other related models.Comment: acknowledgments added; a typo in the discussion that follows Eq. (3) is corrected

    Are spectroscopic factors from transfer reactions consistent with asymptotic normalisation coefficients?

    Full text link
    It is extremely important to devise a reliable method to extract spectroscopic factors from transfer cross sections. We analyse the standard DWBA procedure and combine it with the asymptotic normalisation coefficient, extracted from an independent data set. We find that the single particle parameters used in the past generate inconsistent asymptotic normalization coefficients. In order to obtain a consistent spectroscopic factor, non-standard parameters for the single particle overlap functions can be used but, as a consequence, often reduced spectroscopic strengths emerge. Different choices of optical potentials and higher order effects in the reaction model are also studied. Our test cases consist of: 14^{14}C(d,p)15^{15}C(g.s.) at Edlab=14E_d^{lab}=14 MeV, 16^{16}O(d,p)17^{17}O(g.s.) at Edlab=15E_d^{lab}=15 MeV and 40^{40}Ca(d,p)41^{41}Ca(g.s.) at Edlab=11E_d^{lab}=11 MeV. We underline the importance of performing experiments specifically designed to extract ANCs for these systems.Comment: 15 pages, 12 figures, Phys. Rev. C (in press

    Comment on: Kinetic Roughening in Slow Combustion of Paper

    Full text link
    We comment on a recent Letter by Maunuksela et al. [Phys. Rev. Lett. 79, 1515 (1997)].Comment: 1 page, 1 figure, http://polymer.bu.edu/~hmakse/Home.htm

    Phase lag in epidemics on a network of cities

    Full text link
    We study the synchronisation and phase-lag of fluctuations in the number of infected individuals in a network of cities between which individuals commute. The frequency and amplitude of these oscillations is known to be very well captured by the van Kampen system-size expansion, and we use this approximation to compute the complex coherence function that describes their correlation. We find that, if the infection rate differs from city to city and the coupling between them is not too strong, these oscillations are synchronised with a well defined phase lag between cities. The analytic description of the effect is shown to be in good agreement with the results of stochastic simulations for realistic population sizes.Comment: 10 pages, 6 figure

    Citizens’ involvement in air biomonitoring with strawberry plants

    Get PDF
    Trabalho apresentado em EUDRES Citizen Science Conference, 28-29 de junho 2023, Barreiro, PortugalN/
    • …
    corecore