16,821 research outputs found

    Fluid Dynamical Description of the Chiral Transition

    Get PDF
    We investigate the dynamics of the chiral transition in an expanding quark-anti-quark plasma. The calculations are made within a linear sigma model with explicit quark and antiquark degrees of freedom. We solve numerically the classical equations of motion for chiral fields coupled to the fluid dynamical equations for the plasma. Fast initial growth and strong oscillations of the chiral field and strong amplification of long wavelength modes of the pion field are observed in the course of the chiral transition.Comment: 9 pages LaTeX, 4 postscript figure

    Inflammation and changes in cytokine levels in neurological feline infectious peritonitis.

    Get PDF
    Feline infectious peritonitis (FIP) is a progressive, fatal, predominantly Arthus-type immune-mediated disease that is triggered when cats are infected with a mutant enteric coronavirus. The disease presents variably with multiple organ failure, seizures, generalized effusion, or shock. Neurological FIP is clinically and pathologically more homogeneous than systemic 'wet' or 'dry' FIP; thus, comparison of cytokine profiles from cats with neurological FIP, wet FIP, and non-FIP neurological disease may provide insight into some baseline characteristics relating to the immunopathogenesis of neurological FIP. This study characterizes inflammation and changes in cytokines in the brain tissue of FIP-affected cats. Cellular infiltrates in cats with FIP included lymphocytes, plasma cells, neutrophils, macrophages, and eosinophils. IL-1 beta, IL-6, IL-12, IL-18, TNF-alpha, macrophage inhibitory protein (MIP)-1 alpha, and RANTES showed no upregulation in the brains of control cats, moderate upregulation in neurological FIP cats, and very high upregulation in generalized FIP cats. Transcription of IFN-gamma appeared upregulated in cats with systemic FIP and slightly downregulated in neurological FIP. In most cytokines tested, variance was extremely high in generalized FIP and much less in neurological FIP. Principal components analysis was performed in order to find the least number of 'components' that would summarize the cytokine profiles in cats with neurological FIP. A large component of the variance (91.7%) was accounted for by levels of IL-6, MIP-1 alpha, and RANTES. These findings provide new insight into the immunopathogenesis of FIP and suggest targets for immune therapy of this disease

    Bubble coalescence in breathing DNA: Two vicious walkers in opposite potentials

    Full text link
    We investigate the coalescence of two DNA-bubbles initially located at weak segments and separated by a more stable barrier region in a designed construct of double-stranded DNA. The characteristic time for bubble coalescence and the corresponding distribution are derived, as well as the distribution of coalescence positions along the barrier. Below the melting temperature, we find a Kramers-type barrier crossing behaviour, while at high temperatures, the bubble corners perform drift-diffusion towards coalescence. The results are obtained by mapping the bubble dynamics on the problem of two vicious walkers in opposite potentials.Comment: 7 pages, 4 figure

    Frequency response in surface-potential driven electro-hydrodynamics

    Full text link
    Using a Fourier approach we offer a general solution to calculations of slip velocity within the circuit description of the electro-hydrodynamics in a binary electrolyte confined by a plane surface with a modulated surface potential. We consider the case with a spatially constant intrinsic surface capacitance where the net flow rate is in general zero while harmonic rolls as well as time-averaged vortex-like components may exist depending on the spatial symmetry and extension of the surface potential. In general the system displays a resonance behavior at a frequency corresponding to the inverse RC time of the system. Different surface potentials share the common feature that the resonance frequency is inversely proportional to the characteristic length scale of the surface potential. For the asymptotic frequency dependence above resonance we find a 1/omega^2 power law for surface potentials with either an even or an odd symmetry. Below resonance we also find a power law omega^alpha with alpha being positive and dependent of the properties of the surface potential. Comparing a tanh potential and a sech potential we qualitatively find the same slip velocity, but for the below-resonance frequency response the two potentials display different power law asymptotics with alpha=1 and alpha~2, respectively.Comment: 4 pages including 1 figure. Accepted for PR

    The ac-Driven Motion of Dislocations in a Weakly Damped Frenkel-Kontorova Lattice

    Full text link
    By means of numerical simulations, we demonstrate that ac field can support stably moving collective nonlinear excitations in the form of dislocations (topological solitons, or kinks) in the Frenkel-Kontorova (FK) lattice with weak friction, which was qualitatively predicted by Bonilla and Malomed [Phys. Rev. B{\bf 43}, 11539 (1991)]. Direct generation of the moving dislocations turns out to be virtually impossible; however, they can be generated initially in the lattice subject to an auxiliary spatial modulation of the on-site potential strength. Gradually relaxing the modulation, we are able to get the stable moving dislocations in the uniform FK lattice with the periodic boundary conditions, provided that the driving frequency is close to the gap frequency of the linear excitations in the uniform lattice. The excitations have a large and noninteger index of commensurability with the lattice (suggesting that its actual value is irrational). The simulations reveal two different types of the moving dislocations: broad ones, that extend, roughly, to half the full length of the periodic lattice (in that sense, they cannot be called solitons), and localized soliton-like dislocations, that can be found in an excited state, demonstrating strong persistent internal vibrations. The minimum (threshold) amplitude of the driving force necessary to support the traveling excitation is found as a function of the friction coefficient. Its extrapolation suggests that the threshold does not vanish at the zero friction, which may be explained by radiation losses. The moving dislocation can be observed experimentally in an array of coupled small Josephson junctions in the form of an {\it inverse Josephson effect}, i.e., a dc-voltage response to the uniformly applied ac bias current.Comment: Plain Latex, 13 pages + 9 PostScript figures. to appear on Journal of Physics: condensed matte

    High Q Cavity Induced Fluxon Bunching in Inductively Coupled Josephson Junctions

    Get PDF
    We consider fluxon dynamics in a stack of inductively coupled long Josephson junctions connected capacitively to a common resonant cavity at one of the boundaries. We study, through theoretical and numerical analysis, the possibility for the cavity to induce a transition from the energetically favored state of spatially separated shuttling fluxons in the different junctions to a high velocity, high energy state of identical fluxon modes.Comment: 8 pages, 5 figure

    High-field vortices in Josephson junctions with alternating critical current density

    Full text link
    We study long Josephson junctions with the critical current density alternating along the junction. New equilibrium states, which we call the field synchronized or FS states, are shown to exist if the applied field is from narrow intervals centered around equidistant series of resonant fields, HmH_m. The values of HmH_m are much higher than the flux penetration field, HsH_s. The flux per period of the alternating critical current density, ϕi\phi_i, is fixed for each of the FS states. In the mm-th FS state the value of ϕi\phi_i is equal to an integer amount of flux quanta, ϕi=mϕ0\phi_i =m\phi_0. Two types of single Josephson vortices carrying fluxes ϕ0\phi_0 or/and ϕ0/2\phi_0/2 can exist in the FS states. Specific stepwise resonances in the current-voltage characteristics are caused by periodic motion of these vortices between the edges of the junction.Comment: 4 pages, 5 figure
    • …
    corecore