4 research outputs found
Proinflammatory status of oral fluid in COVID-19
At present, a search for promising ways to diagnose infection caused by SARS-CoV-2 is quite relevant. Oral fluid is not commonly used for assessment of COVID-19 risk. Its molecular profile reflects both local state of the oral cavity, and individual organs and systems, thus suggesting a reliable diagnostic platform. Systemic inflammatory response is known to play a crucial role in development of the coronavirus infection; the βcytokine stormβ determines severity of the disease. The saliva-based diagnostics of clinical course in COVID-19 patients includes determination of IL-6, IL-8, C-reactive protein in oral fluid, in order to assess severity of the inflammatory process. The present study was carried out at the Department of Fundamental and Clinical Biochemistry with Laboratory Diagnostics, and Department of Pediatric Infections at the Samara State Medical University. The study involved 122 persons: 67 clinically healthy individuals comprised the control group, and the group of comparison included 55 inpatients with moderate or severe coronavirus infection (COVID-19) caused by SARS-CoV-2 virus as confirmed by PCR and/or ELISA testing. Development of the disease was accompanied by drastically increased contents of IL-6 and IL-8 in oral fluid of the patients relative to the indexes in healthy persons, i.e., several-fold for IL-6 (+ 650%) and even higher elevation of IL-8 levels (+ 26513%), as well as a 2-fold increase of C-reactive protein (+115%). When comparing the immune indexes of oral fluid in presence versus absence of respiratory insufficiency, a significant difference was found for salivary IL-6 (+173%) in the patients with grade 1-2 respiratory insufficiency as compared with patients free of respiratory disorders. Determination of these proinflammatory markers in patients with COVID-19 is of important prognostic significance when assessing development of the disease and its severity. Direct detection of their content in the oral fluid makes this method relevant, and potentially demanded for the outpatient diagnostics, being highly important during pandemics of coronavirus infection and limited medical resources. Examination of oral fluid at the pre-hospital stage is a resource-saving technology, since it does not require additional medical staff to take biomaterial, is non-invasive to the patient, and suggesting a wide range of research items, it can resolve a number of diagnostic issues, e.c., presence of specific genetic material or antibodies to SARS-CoV-2, severity of the inflammatory process and the risk of respiratory failure in the patient
ΠΠΎΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Π»Π°ΠΊΡΠ°ΡΠ΄Π΅Π³ΠΈΠ΄ΡΠΎΠ³Π΅Π½Π°Π·Ρ: Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΠΊΡΠΎΡΠ° Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΌΠ°Π»ΡΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ», ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ
The aim of this work was to study the conformational changes of lactate dehydrogenase under the influence ofΒ different concentrations of intermediates (pyruvate, oxaloacetate) in the temperature gradient with theΒ subsequentΒ building of a mathematical model.Materials and methods. Thermolability of lactate dehydrogenase was studied using the method of differentialΒ scanning fluorimetry to determine the change in endogenous fluorescence of tryptophan and tyrosine underΒ the conditions of stable concentration of lactate dehydrogenase and changing concentrations of pyruvate andΒ oxaloacetate. Further, a mathematical model was developed for a more in-depth consideration of the behavior ofΒ the catalytic protein.Results. We found that pyruvate and oxaloacetate in low concentrations have a thermostabilizing effect on lactateΒ dehydrogenase conformation; the effect of pyruvate is statistically more significant in comparison with oxaloacetateΒ (p < 0.05). The studied ligands in high concentrations reduce the thermal stability of lactate dehydrogenase.Conclusion. Understanding the role of small molecules in the regulation of biological and catalytic processes hasΒ long remained in the background of scientific interest, but today the work in this direction is reaching a new level.Β The data obtained indicate the possibility of small molecules acting as ligands when interacting with enzymes.Β Β Π¦Π΅Π»Ρ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΠΊΠΎΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π»Π°ΠΊΡΠ°ΡΠ΄Π΅Π³ΠΈΠ΄ΡΠΎΠ³Π΅Π½Π°Π·Ρ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΠΈΠ½ΡΠ΅ΡΠΌΠ΅Π΄ΠΈΠ°ΡΠΎΠ² (ΠΏΠΈΡΡΠ²Π°Ρ, ΠΎΠΊΡΠ°Π»ΠΎΠ°ΡΠ΅ΡΠ°Ρ) Π² ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠΌ Π³ΡΠ°Π΄ΠΈΠ΅Π½ΡΠ΅ Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ΠΌΒ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΡΠΌΠΎΠ»Π°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ Π»Π°ΠΊΡΠ°ΡΠ΄Π΅Π³ΠΈΠ΄ΡΠΎΠ³Π΅Π½Π°Π·Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΡΒ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠΎΠ΄Π° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π½ΠΈΡΡΡΡΠ΅ΠΉ ΡΠ»ΡΠΎΡΠΈΠΌΠ΅ΡΡΠΈΠΈ ΠΏΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡΒ ΡΠ½Π΄ΠΎΠ³Π΅Π½Π½ΠΎΠΉ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈΒ ΡΡΠΈΠΏΡΠΎΡΠ°Π½Π° ΠΈ ΡΠΈΡΠΎΠ·ΠΈΠ½Π° Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Π»Π°ΠΊΡΠ°ΡΠ΄Π΅Π³ΠΈΠ΄ΡΠΎΠ³Π΅Π½Π°Π·Ρ ΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠΈΡ
ΡΡΒ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΠΏΠΈΡΡΠ²Π°ΡΠ° ΠΈ ΠΎΠΊΡΠ°Π»ΠΎΠ°ΡΠ΅ΡΠ°ΡΠ°. ΠΠ°Π»Π΅Π΅ Π±ΡΠ»Π° ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Π΄Π»Ρ Π±ΠΎΠ»Π΅Π΅ ΡΠ³Π»ΡΠ±Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ°.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΠ»ΠΎ Π²ΡΡΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΠΈΡΡΠ²Π°Ρ ΠΈ ΠΎΠΊΡΠ°Π»ΠΎΠ°ΡΠ΅ΡΠ°Ρ Π² Π½ΠΈΠ·ΠΊΠΈΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡΡ
ΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ ΡΠ΅ΡΠΌΠΎΡΡΠ°Π±ΠΈΠ»ΠΈΠ·ΠΈΡΡΡΡΠ΅Π΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π° ΠΊΠΎΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ Π»Π°ΠΊΡΠ°ΡΠ΄Π΅Π³ΠΈΠ΄ΡΠΎΠ³Π΅Π½Π°Π·Ρ, Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΏΠΈΡΡΠ²Π°ΡΠ° ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π±ΠΎΠ»Π΅Π΅Β Π·Π½Π°ΡΠΈΠΌΠΎ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Ρ ΠΎΠΊΡΠ°Π»ΠΎΠ°ΡΠ΅ΡΠ°ΡΠΎΠΌ (p < 0,05). ΠΠ·ΡΡΠ°Π΅ΠΌΡΠ΅ Π»ΠΈΠ³Π°Π½Π΄Ρ Π² Π²ΡΡΠΎΠΊΠΈΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡΡ
ΡΠ½ΠΈΠΆΠ°ΡΡΒ ΡΠ΅ΡΠΌΠΎΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ Π»Π°ΠΊΡΠ°ΡΠ΄Π΅Π³ΠΈΠ΄ΡΠΎΠ³Π΅Π½Π°Π·Ρ.ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠΎΠ»ΠΈ ΠΌΠ°Π»ΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ» Π² ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ²Β Π΄ΠΎΠ»Π³ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΠΎΡΡΠ°Π²Π°Π»ΠΎΡΡ Π² ΡΠ΅Π½ΠΈ Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ°, Π½ΠΎ ΡΠ΅Π³ΠΎΠ΄Π½Ρ ΡΠ°Π±ΠΎΡΠ° Π² Π΄Π°Π½Π½ΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ Π²ΡΡ
ΠΎΠ΄ΠΈΡ Π½Π° ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π½ΠΎΠ²ΡΠΉ ΡΡΠΎΠ²Π΅Π½Ρ.Β ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΌΠ°Π»ΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ» Π²ΡΡΡΡΠΏΠ°ΡΡΒ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ² ΠΏΡΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ Ρ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ
PASS ΠΈ STITCH Π² Π²Π΅ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ ΡΠ²ΠΎΠΉΡΡΠ² ΠΏΠΈΡΡΠ²Π°ΡΠ° ΠΈ Π»Π°ΠΊΡΠ°ΡΠ°. ΠΠ±Π·ΠΎΡ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ ΠΈ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΡ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ
The aim of the study was to identify the predicted spectrum of biological activity of pyruvate and lactate using modern computer modeling methods and to determine potential protein partners in intermolecular interaction.Materials and methods. The biological activity spectrum of pyruvate and lactate by the structural formula was determined using the PASS (Prediction of Activity Spectra for Substances) software. Potential protein interaction partners for small molecules were predicted using the Search Tool for Interactions Chemicals (STITCH).Results. Analyzing the obtained results in silico reveals that pyruvate and lactate exhibit diverse biological activities, molecular mechanisms, and pharmacological effects. These include regulation of lipid, protein, and carbohydrate metabolism and effects on enzyme activity and gene expression. The data on the antihypoxic, antiischemic, antitoxic, immunomodulatory, antiinflammatory, antiviral, vasoprotective, and cytoprotective effects are presented. The neuroprotective and antineurotoxic effects of pyruvate and lactate are predicted.Conclusion. The spectrum of biological activities of lactate and pyruvate were revealed by computer modeling methods, and protein interaction partners were characterized. The small molecules we studied have a coordinating role in the functioning and modulation of mediator, hormonal, receptor, immune, inflammatory, antibacterial, and antiviral responses and gene expression. The use of natural intermediates as therapeutic agents for the treatment of ischemic stroke, acute neurological disorders, and neurodegeneration is discussed, which is underlain by the stimulating effect of metabolites on neuroplasticity. These properties may be manifested through conformational rearrangement of receptors, active binding centers, expression of multiple genes, and changes in the functional manifestations of catalytic and other proteins. The obtained data will obviously expand our understanding of the role of small molecules in intermolecular metabolite β protein interactions.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² Π²ΡΡΠ²Π»Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ° Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΠΈΡΡΠ²Π°ΡΠ° ΠΈ Π»Π°ΠΊΡΠ°ΡΠ° Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ
Π±Π΅Π»ΠΊΠΎΠ²ΡΡ
ΠΏΠ°ΡΡΠ½Π΅ΡΠΎΠ² Π΄Π»Ρ ΠΌΠ΅ΠΆΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΏΠ΅ΠΊΡΡΠ° Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΠΈΡΡΠ²Π°ΡΠ° ΠΈ Π»Π°ΠΊΡΠ°ΡΠ° ΠΏΠΎ ΡΡΡΡΠΊΡΡΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡΠ»Π΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎΠΌ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΠΈ Prediction of Activity Spectra for Substances (PASS). ΠΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ
Π±Π΅Π»ΠΊΠΎΠ²ΡΡ
ΠΏΠ°ΡΡΠ½Π΅ΡΠΎΠ² Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Π΄Π»Ρ ΠΌΠ°Π»ΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ» Π²ΡΠΏΠΎΠ»Π½ΡΠ»ΠΈ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ Search Tool for Interactions Chemicals (STITCH, ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½Ρ ΠΏΠΎΠΈΡΠΊΠ° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ
Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
Π²Π΅ΡΠ΅ΡΡΠ²).Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠ½Π°Π»ΠΈΠ·ΠΈΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ in silico, ΠΎΠ±ΡΠ°ΡΠ°Π΅Ρ Π½Π° ΡΠ΅Π±Ρ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΠΉ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ
ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΠΌΡΡ
ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΡΠ΅ΠΊΡΠΎΠ² ΠΏΠΈΡΡΠ²Π°ΡΠ° ΠΈ Π»Π°ΠΊΡΠ°ΡΠ°. Π‘ΡΠ΅Π΄ΠΈ Π½ΠΈΡ
ΡΠ΅Π³ΡΠ»ΡΡΠΈΡ Π»ΠΈΠΏΠΈΠ΄Π½ΠΎΠ³ΠΎ, Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ, ΡΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½ΠΎΠ², Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠ², ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡ Π³Π΅Π½ΠΎΠ². ΠΡΠΈΠ²ΠΎΠ΄ΡΡΡΡ Π΄Π°Π½Π½ΡΠ΅ Π°Π½ΡΠΈΠ³ΠΈΠΏΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ, Π°Π½ΡΠΈΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ, Π°Π½ΡΠΈΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ, ΠΈΠΌΠΌΡΠ½ΠΎΠΌΠΎΠ΄ΡΠ»ΠΈΡΡΡΡΠ΅Π³ΠΎ, ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ, ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΈΡΡΡΠ½ΠΎΠ³ΠΎ, Π²Π°Π·ΠΎΠΏΡΠΎΡΠ΅ΠΊΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΈ ΡΠΈΡΠΎΠΏΡΠΎΡΠ΅ΠΊΡΠΎΡΠ½ΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ. Π‘ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΎ Π½Π΅ΠΉΡΠΎΠΏΡΠΎΡΠ΅ΠΊΡΠΎΡΠ½ΠΎΠ΅, Π°Π½ΡΠΈΠ½Π΅ΠΉΡΠΎΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΏΠΈΡΡΠ²Π°ΡΠ° ΠΈ Π»Π°ΠΊΡΠ°ΡΠ°.ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ°ΡΠΊΡΡΡ ΡΠΏΠ΅ΠΊΡΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π»Π°ΠΊΡΠ°ΡΠ° ΠΈ ΠΏΠΈΡΡΠ²Π°ΡΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΡ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°Π½Ρ Π±Π΅Π»ΠΊΠΈ-ΠΏΠ°ΡΡΠ½Π΅ΡΡ ΠΏΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ. ΠΠ·ΡΡΠ°Π΅ΠΌΡΠ΅ Π½Π°ΠΌΠΈ ΠΌΠ°Π»ΡΠ΅ ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠΈΠΎΠ½Π½ΡΡ ΡΠΎΠ»Ρ Π² ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΈ ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠΈ ΠΌΠ΅Π΄ΠΈΠ°ΡΠΎΡΠ½ΠΎΠ³ΠΎ, Π³ΠΎΡΠΌΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ, ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠΎΠ², ΠΈΠΌΠΌΡΠ½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
, Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΡ
, Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
, ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΈΡΡΡΠ½ΡΡ
ΡΠ΅Π°ΠΊΡΠΈΠΉ, ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ Π³Π΅Π½ΠΎΠ². ΠΠ±ΡΡΠΆΠ΄Π°Π΅ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΈΠ½ΡΠ΅ΡΠΌΠ΅Π΄ΠΈΠ°ΡΠΎΠ² Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ΅Π΄ΡΡΠ² Π΄Π»Ρ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ½ΡΡΠ»ΡΡΠ°, ΠΎΡΡΡΡΡ
Π½Π΅Π²ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ², Π½Π΅ΠΉΡΠΎΠ΄Π΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π² ΡΠ²ΠΎΠ΅ΠΉ ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΠΈΠΌΡΠ»ΠΈΡΡΡΡΠ΅Π΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΡΠΎΠ² Π½Π° ΠΏΡΠΎΡΠ΅ΡΡΡ ΠΏΠ»Π°ΡΡΠΈΡΠ½ΠΎΡΡΠΈ ΠΌΠΎΠ·Π³Π°. ΠΡΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ², Π²Π΅ΡΠΎΡΡΠ½ΠΎ, ΡΠ΅Π°Π»ΠΈΠ·ΡΠ΅ΡΡΡ ΡΠ΅ΡΠ΅Π· ΠΊΠΎΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΡ ΠΏΠ΅ΡΠ΅ΡΡΡΠΎΠΉΠΊΡ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ², Π°ΠΊΡΠΈΠ²Π½ΡΡ
ΡΠ΅Π½ΡΡΠΎΠ² ΡΠ²ΡΠ·ΡΠ²Π°Π½ΠΈΡ, ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Π³Π΅Π½ΠΎΠ², ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠΉ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ Π΄ΡΡΠ³ΠΈΡ
Π±Π΅Π»ΠΊΠΎΠ². ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π·Π½Π°Π½ΠΈΡ, ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΠ°ΡΡΠΈΡΡΡ Π½Π°ΡΠ΅ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠΎΠ»ΠΈ ΠΌΠ°Π»ΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ» Π² ΠΌΠ΅ΠΆΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ
Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡΡ
ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΡβΠ±Π΅Π»ΠΎΠΊ
Conformational features of lactate dehydrogenase: Temperature effect in presence of small molecules, mathematical model
The aim. To study the conformational changes of lactate dehydrogenase under the influence of different concentrations of intermediates (pyruvate, oxaloacetate) in the temperature gradient with the subsequent building of a mathematical model. Materials and methods. Thermolability of lactate dehydrogenase was studied using the method of differential scanning fluorimetry to determine the change in endogenous fluorescence of tryptophan and tyrosine under the conditions of stable concentration of lactate dehydrogenase and changing concentrations of pyruvate and oxaloacetate. Further, a mathematical model was developed for a more in-depth consideration of the behavior of the catalytic protein. Results. We found that pyruvate and oxaloacetate in low concentrations have a thermostabilizing effect on lactate dehydrogenase conformation; the effect of pyruvate is statistically more significant in comparison with oxaloacetate (p < 0.05). The studied ligands in high concentrations reduce the thermal stability of lactate dehydrogenase. Conclusion. Understanding the role of small molecules in the regulation of biological and catalytic processes has long remained in the background of scientific interest, but today the work in this direction is reaching a new level. The data obtained indicate the possibility of small molecules acting as ligands when interacting with enzymes. Β© 2020 Siberian State Medical University. All rights reserved