4 research outputs found

    Proinflammatory status of oral fluid in COVID-19

    Get PDF
    At present, a search for promising ways to diagnose infection caused by SARS-CoV-2 is quite relevant. Oral fluid is not commonly used for assessment of COVID-19 risk. Its molecular profile reflects both local state of the oral cavity, and individual organs and systems, thus suggesting a reliable diagnostic platform. Systemic inflammatory response is known to play a crucial role in development of the coronavirus infection; the β€œcytokine storm” determines severity of the disease. The saliva-based diagnostics of clinical course in COVID-19 patients includes determination of IL-6, IL-8, C-reactive protein in oral fluid, in order to assess severity of the inflammatory process. The present study was carried out at the Department of Fundamental and Clinical Biochemistry with Laboratory Diagnostics, and Department of Pediatric Infections at the Samara State Medical University. The study involved 122 persons: 67 clinically healthy individuals comprised the control group, and the group of comparison included 55 inpatients with moderate or severe coronavirus infection (COVID-19) caused by SARS-CoV-2 virus as confirmed by PCR and/or ELISA testing. Development of the disease was accompanied by drastically increased contents of IL-6 and IL-8 in oral fluid of the patients relative to the indexes in healthy persons, i.e., several-fold for IL-6 (+ 650%) and even higher elevation of IL-8 levels (+ 26513%), as well as a 2-fold increase of C-reactive protein (+115%). When comparing the immune indexes of oral fluid in presence versus absence of respiratory insufficiency, a significant difference was found for salivary IL-6 (+173%) in the patients with grade 1-2 respiratory insufficiency as compared with patients free of respiratory disorders. Determination of these proinflammatory markers in patients with COVID-19 is of important prognostic significance when assessing development of the disease and its severity. Direct detection of their content in the oral fluid makes this method relevant, and potentially demanded for the outpatient diagnostics, being highly important during pandemics of coronavirus infection and limited medical resources. Examination of oral fluid at the pre-hospital stage is a resource-saving technology, since it does not require additional medical staff to take biomaterial, is non-invasive to the patient, and suggesting a wide range of research items, it can resolve a number of diagnostic issues, e.c., presence of specific genetic material or antibodies to SARS-CoV-2, severity of the inflammatory process and the risk of respiratory failure in the patient

    ΠšΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ особСнности Π»Π°ΠΊΡ‚Π°Ρ‚Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Ρ‹: влияниС Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° Π² присутствии ΠΌΠ°Π»Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», матСматичСская модСль

    Get PDF
    The aim of this work was to study the conformational changes of lactate dehydrogenase under the influence ofΒ different concentrations of intermediates (pyruvate, oxaloacetate) in the temperature gradient with theΒ  subsequentΒ building of a mathematical model.Materials and methods. Thermolability of lactate dehydrogenase was studied using the method of differentialΒ scanning fluorimetry to determine the change in endogenous fluorescence of tryptophan and tyrosine underΒ the conditions of stable concentration of lactate dehydrogenase and changing concentrations of pyruvate andΒ oxaloacetate. Further, a mathematical model was developed for a more in-depth consideration of the behavior ofΒ the catalytic protein.Results. We found that pyruvate and oxaloacetate in low concentrations have a thermostabilizing effect on lactateΒ dehydrogenase conformation; the effect of pyruvate is statistically more significant in comparison with oxaloacetateΒ (p < 0.05). The studied ligands in high concentrations reduce the thermal stability of lactate dehydrogenase.Conclusion. Understanding the role of small molecules in the regulation of biological and catalytic processes hasΒ long remained in the background of scientific interest, but today the work in this direction is reaching a new level.Β The data obtained indicate the possibility of small molecules acting as ligands when interacting with enzymes.  ЦСль. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ измСнСния Π»Π°ΠΊΡ‚Π°Ρ‚Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Ρ‹ ΠΏΠΎΠ΄ дСйствиСм Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄ΠΈΠ°Ρ‚ΠΎΠ² (ΠΏΠΈΡ€ΡƒΠ²Π°Ρ‚, оксалоацСтат) Π² Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠΌ Π³Ρ€Π°Π΄ΠΈΠ΅Π½Ρ‚Π΅ с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ построСниСм матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ‚Π΅Ρ€ΠΌΠΎΠ»Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π»Π°ΠΊΡ‚Π°Ρ‚Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Ρ‹ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ с  использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Ρ„Π»ΡƒΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΏΠΎ измСнСнию  эндогСнной флуорСсцСнции триптофана ΠΈ Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½Π° Π² условиях ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π»Π°ΠΊΡ‚Π°Ρ‚Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Ρ‹ ΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‰ΠΈΡ…ΡΡΒ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ ΠΏΠΈΡ€ΡƒΠ²Π°Ρ‚Π° ΠΈ оксалоацСтата. Π”Π°Π»Π΅Π΅ Π±Ρ‹Π»Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° матСматичСская модСль для Π±ΠΎΠ»Π΅Π΅ ΡƒΠ³Π»ΡƒΠ±Π»Π΅Π½Π½ΠΎΠ³ΠΎ рассмотрСния повСдСния каталитичСского Π±Π΅Π»ΠΊΠ°.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π‘Ρ‹Π»ΠΎ выявлСно, Ρ‡Ρ‚ΠΎ ΠΏΠΈΡ€ΡƒΠ²Π°Ρ‚ ΠΈ оксалоацСтат Π² Π½ΠΈΠ·ΠΊΠΈΡ… концСнтрациях ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ воздСйствиС Π½Π° ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ Π»Π°ΠΊΡ‚Π°Ρ‚Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Ρ‹, влияниС ΠΏΠΈΡ€ΡƒΠ²Π°Ρ‚Π° статистичСски Π±ΠΎΠ»Π΅Π΅Β Π·Π½Π°Ρ‡ΠΈΠΌΠΎ Π² сравнСнии с оксалоацСтатом (p < 0,05). Π˜Π·ΡƒΡ‡Π°Π΅ΠΌΡ‹Π΅ Π»ΠΈΠ³Π°Π½Π΄Ρ‹ Π² высоких концСнтрациях ΡΠ½ΠΈΠΆΠ°ΡŽΡ‚Β Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π»Π°ΠΊΡ‚Π°Ρ‚Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Ρ‹.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ПониманиС Ρ€ΠΎΠ»ΠΈ ΠΌΠ°Π»Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π² рСгуляции биологичСских ΠΈ каталитичСских процСссов долгоС врСмя ΠΎΡΡ‚Π°Π²Π°Π»ΠΎΡΡŒ Π² Ρ‚Π΅Π½ΠΈ Π½Π°ΡƒΡ‡Π½ΠΎΠ³ΠΎ интСрСса, Π½ΠΎ сСгодня Ρ€Π°Π±ΠΎΡ‚Π° Π² Π΄Π°Π½Π½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ Π²Ρ‹Ρ…ΠΎΠ΄ΠΈΡ‚ Π½Π° качСствСнно Π½ΠΎΠ²Ρ‹ΠΉ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ.Β  ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ возмоТности ΠΌΠ°Π»Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π²Ρ‹ΡΡ‚ΡƒΠΏΠ°Ρ‚ΡŒΒ Π² качСствС Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ² ΠΏΡ€ΠΈ взаимодСйствии с каталитичСскими Π±Π΅Π»ΠΊΠ°ΠΌΠΈ

    PASS ΠΈ STITCH Π² Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ нСизвСстных свойств ΠΏΠΈΡ€ΡƒΠ²Π°Ρ‚Π° ΠΈ Π»Π°ΠΊΡ‚Π°Ρ‚Π°. ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ‹ собствСнных исслСдований

    No full text
    The aim of the study was to identify the predicted spectrum of biological activity of pyruvate and lactate using modern computer modeling methods and to determine potential protein partners in intermolecular interaction.Materials and methods. The biological activity spectrum of pyruvate and lactate by the structural formula was determined using the PASS (Prediction of Activity Spectra for Substances) software. Potential protein interaction partners for small molecules were predicted using the Search Tool for Interactions Chemicals (STITCH).Results. Analyzing the obtained results in silico reveals that pyruvate and lactate exhibit diverse biological activities, molecular mechanisms, and pharmacological effects. These include regulation of lipid, protein, and carbohydrate metabolism and effects on enzyme activity and gene expression. The data on the antihypoxic, antiischemic, antitoxic, immunomodulatory, antiinflammatory, antiviral, vasoprotective, and cytoprotective effects are presented. The neuroprotective and antineurotoxic effects of pyruvate and lactate are predicted.Conclusion. The spectrum of biological activities of lactate and pyruvate were revealed by computer modeling methods, and protein interaction partners were characterized. The small molecules we studied have a coordinating role in the functioning and modulation of mediator, hormonal, receptor, immune, inflammatory, antibacterial, and antiviral responses and gene expression. The use of natural intermediates as therapeutic agents for the treatment of ischemic stroke, acute neurological disorders, and neurodegeneration is discussed, which is underlain by the stimulating effect of metabolites on neuroplasticity. These properties may be manifested through conformational rearrangement of receptors, active binding centers, expression of multiple genes, and changes in the functional manifestations of catalytic and other proteins. The obtained data will obviously expand our understanding of the role of small molecules in intermolecular metabolite – protein interactions.ЦСль исслСдования Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² выявлСнии ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ спСктра биологичСской активности ΠΏΠΈΡ€ΡƒΠ²Π°Ρ‚Π° ΠΈ Π»Π°ΠΊΡ‚Π°Ρ‚Π° с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ соврСмСнных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² модСлирования, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… ΠΏΠ°Ρ€Ρ‚Π½Π΅Ρ€ΠΎΠ² для мСТмолСкулярного взаимодСйствия.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ спСктра биологичСской активности ΠΏΠΈΡ€ΡƒΠ²Π°Ρ‚Π° ΠΈ Π»Π°ΠΊΡ‚Π°Ρ‚Π° ΠΏΠΎ структурной Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΌ обСспСчСнии Prediction of Activity Spectra for Substances (PASS). ΠŸΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… ΠΏΠ°Ρ€Ρ‚Π½Π΅Ρ€ΠΎΠ² взаимодСйствия для ΠΌΠ°Π»Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» выполняли Π² систСмС Search Tool for Interactions Chemicals (STITCH, инструмСнт поиска Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… химичСских вСщСств).Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Анализируя ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ in silico, ΠΎΠ±Ρ€Π°Ρ‰Π°Π΅Ρ‚ Π½Π° сСбя Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ проявлСниС Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΠΉ биологичСской активности молСкулярных ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… фармакологичСских эффСктов ΠΏΠΈΡ€ΡƒΠ²Π°Ρ‚Π° ΠΈ Π»Π°ΠΊΡ‚Π°Ρ‚Π°. Π‘Ρ€Π΅Π΄ΠΈ Π½ΠΈΡ… рСгуляция Π»ΠΈΠΏΠΈΠ΄Π½ΠΎΠ³ΠΎ, Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ, ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½ΠΎΠ², влияниС Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ², ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ Π³Π΅Π½ΠΎΠ². ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‚ΡΡ Π΄Π°Π½Π½Ρ‹Π΅ антигипоксичСского, Π°Π½Ρ‚ΠΈΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠ³ΠΎ, антитоксичСского, ΠΈΠΌΠΌΡƒΠ½ΠΎΠΌΠΎΠ΄ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ, противовирусного, Π²Π°Π·ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ ΠΈ Ρ†ΠΈΡ‚ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ дСйствий. Π‘ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ Π½Π΅ΠΉΡ€ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅, антинСйротоксичСскоС дСйствиС ΠΏΠΈΡ€ΡƒΠ²Π°Ρ‚Π° ΠΈ Π»Π°ΠΊΡ‚Π°Ρ‚Π°.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ модСлирования раскрыт спСктр биологичСской активности Π»Π°ΠΊΡ‚Π°Ρ‚Π° ΠΈ ΠΏΠΈΡ€ΡƒΠ²Π°Ρ‚Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Π±Π΅Π»ΠΊΠΈ-ΠΏΠ°Ρ€Ρ‚Π½Π΅Ρ€Ρ‹ ΠΏΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ. Π˜Π·ΡƒΡ‡Π°Π΅ΠΌΡ‹Π΅ Π½Π°ΠΌΠΈ ΠΌΠ°Π»Ρ‹Π΅ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†ΠΈΠΎΠ½Π½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈ модуляции ΠΌΠ΅Π΄ΠΈΠ°Ρ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ, Π³ΠΎΡ€ΠΌΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ, Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚ΠΎΠ², иммунологичСских, Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ…, Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ…, противовирусных Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ, экспрСссии Π³Π΅Π½ΠΎΠ². ΠžΠ±ΡΡƒΠΆΠ΄Π°Π΅Ρ‚ΡΡ использованиС СстСствСнных ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄ΠΈΠ°Ρ‚ΠΎΠ² Π² качСствС тСрапСвтичСских срСдств для лСчСния ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚Π°, острых нСврологичСских расстройств, Π½Π΅ΠΉΡ€ΠΎΠ΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ, Ρ‡Ρ‚ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ Π² своСй основС ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ дСйствиС ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‚ΠΎΠ² Π½Π° процСссы пластичности ΠΌΠΎΠ·Π³Π°. ΠŸΡ€ΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ этих свойств, вСроятно, рСализуСтся Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΡƒΡŽ пСрСстройку Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ², Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² связывания, экспрСссии мноТСства Π³Π΅Π½ΠΎΠ², ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… проявлСний каталитичСских ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π±Π΅Π»ΠΊΠΎΠ². ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ знания, ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ€Π°ΡΡˆΠΈΡ€ΡΡ‚ нашС ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ Ρ€ΠΎΠ»ΠΈ ΠΌΠ°Π»Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π² мСТмолСкулярных взаимодСйствиях мСтаболит–бСлок

    Conformational features of lactate dehydrogenase: Temperature effect in presence of small molecules, mathematical model

    No full text
    The aim. To study the conformational changes of lactate dehydrogenase under the influence of different concentrations of intermediates (pyruvate, oxaloacetate) in the temperature gradient with the subsequent building of a mathematical model. Materials and methods. Thermolability of lactate dehydrogenase was studied using the method of differential scanning fluorimetry to determine the change in endogenous fluorescence of tryptophan and tyrosine under the conditions of stable concentration of lactate dehydrogenase and changing concentrations of pyruvate and oxaloacetate. Further, a mathematical model was developed for a more in-depth consideration of the behavior of the catalytic protein. Results. We found that pyruvate and oxaloacetate in low concentrations have a thermostabilizing effect on lactate dehydrogenase conformation; the effect of pyruvate is statistically more significant in comparison with oxaloacetate (p < 0.05). The studied ligands in high concentrations reduce the thermal stability of lactate dehydrogenase. Conclusion. Understanding the role of small molecules in the regulation of biological and catalytic processes has long remained in the background of scientific interest, but today the work in this direction is reaching a new level. The data obtained indicate the possibility of small molecules acting as ligands when interacting with enzymes. Β© 2020 Siberian State Medical University. All rights reserved
    corecore