206 research outputs found

    Characterization of deep impurities in semiconductors by terahertz tunneling ionization

    Get PDF
    Tunneling ionization in high frequency fields as well as in static fields is suggested as a method for the characterization of deep impurities in semiconductors. It is shown that an analysis of the field and temperature dependences of the ionization probability allows to obtain defect parameters like the charge of the impurity, tunneling times, the Huang–Rhys parameter, the difference between optical and thermal binding energy, and the basic structure of the defect adiabatic potentials. Compared to static fields, high frequency electric fields in the terahertz-range offer various advantages, as they can be applied contactlessly and homogeneously even to bulk samples using the intense radiation of a high power pulsed far-infrared laser. Furthermore, impurity ionization with terahertz radiation can be detected as photoconductive signal with a very high sensitivity in a wide range of electric field strengths

    Opto-Electronic Characterization of Three Dimensional Topological Insulators

    Full text link
    We demonstrate that the terahertz/infrared radiation induced photogalvanic effect, which is sensitive to the surface symmetry and scattering details, can be applied to study the high frequency conductivity of the surface states in (Bi1-xSbx)2Te3 based three dimensional (3D) topological insulators (TI). In particular, measuring the polarization dependence of the photogalvanic current and scanning with a micrometre sized beam spot across the sample, provides access to (i) topographical inhomogeneity's in the electronic properties of the surface states and (ii) the local domain orientation. An important advantage of the proposed method is that it can be applied to study TIs at room temperature and even in materials with a high electron density of bulk carriers.Comment: 6 pages, 4 figure

    Distinction between the Poole-Frenkel and tunneling models of electric field-stimulated carrier emission from deep levels in semiconductors

    Get PDF
    The enhancement of the emission rate of charge carriers from deep-level defects in electric field is routinely used to determine the charge state of the defects. However, only a limited number of defects can be satisfactorily described by the Poole-Frenkel theory. An electric field dependence different from that expected from the Poole-Frenkel theory has been repeatedly reported in the literature, and no unambiguous identification of the charge state of the defect could be made. In this article, the electric field dependencies of emission of carriers from DX centers in AlxGa1-xAs:Te, Cu pairs in silicon, and Ge:Hg have been studied applying static and terahertz electric fields, and analyzed by using the models of Poole-Frenkel and phonon assisted tunneling. It is shown that phonon assisted tunneling and Poole-Frenkel emission are two competitive mechanisms of enhancement of emission of carriers, and their relative contribution is determined by the charge state of the defect and by the electric-field strength. At high-electric field strengths carrier emission is dominated by tunneling independently of the charge state of the impurity. For neutral impurities, where Poole-Frenkel lowering of the emission barrier does not occur, the phonon assisted tunneling model describes well the experimental data also in the low-field region. For charged impurities the transition from phonon assisted tunneling at high fields to Poole-Frenkel effect at low fields can be traced back. It is suggested that the Poole-Frenkel and tunneling models can be distinguished by plotting logarithm of the emission rate against the square root or against the square of the electric field, respectively. This analysis enables one to unambiguously determine the charge state of a deep-level defect

    Spin photocurrents and circular photon drag effect in (110)-grown quantum well structures

    Get PDF
    We report on the study of spin photocurrents in (110)-grown quantum well structures. Investigated effects comprise the circular photogalvanic effect and so far not observed circular photon drag effect. The experimental data can be described by an analytical expression derived from a phenomenological theory. A microscopic model of the circular photon drag effect is developed demonstrating that the generated current has spin dependent origin.Comment: 6 pages, 3 figure

    Magneto-gyrotropic effects in semiconductor quantum wells (review)

    Full text link
    Magneto-gyrotropic photogalvanic effects in quantum wells are reviewed. We discuss experimental data, results of phenomenological analysis and microscopic models of these effects. The current flow is driven by spin-dependent scattering in low-dimensional structures gyrotropic media resulted in asymmetry of photoexcitation and relaxation processes. Several applications of the effects are also considered.Comment: 28 pages, 13 figure

    Electron and Hole Spin Splitting and Photogalvanic Effect in Quantum Wells

    Full text link
    A theory of the circular photogalvanic effect caused by spin splitting in quantum wells is developed. Direct interband transitions between the hole and electron size-quantized subbands are considered. It is shown that the photocurrent value and direction depend strongly on the form of the spin-orbit interaction. The currents induced by structure-, bulk-, and interface-inversion asymmetry are investigated. The photocurrent excitation spectra caused by spin splittings in both conduction and valence bands are calculated.Comment: 7 pages, 3 figure

    All-electric detectors of the polarization state of terahertz laser radiation (extended version)

    Get PDF
    Two types of room temperature detectors of terahertz laser radiation have been developed which allow in an all-electric manner to determine the plane of polarization of linearly polarized radiation and the ellipticity of elliptically polarized radiation, respectively. The operation of the detectors is based on photogalvanic effects in semiconductor quantum well structures of low symmetry. The photogalvanic effects have sub-nanosecond time constants at room temperature making a high time resolution of the polarization detectors possible

    Cyclotron resonance photoconductivity of a two-dimensional electron gas in HgTe quantum wells

    Full text link
    Far-infrared cyclotron resonance photoconductivity (CRP) is investigated in HgTe quantum wells (QWs) of various widths grown on (013) oriented GaAs substrates. It is shown that CRP is caused by the heating of two-dimensional electron gas (2DEG). From the resonance magnetic field strength effective masses and their dependence on the carrier concentration is obtained. We found that the effective mass in each sample slightly increases from the value (0.0260 \pm 0.0005)m_0 at N_s = 2.2x10^11 cm^(-2) to (0.0335 \pm 0.0005)m_0 at N_s = 9.6x10^11 cm^(-2). Compared to determination of effective masses by the temperature dependence of magnitudes of the Shubnikov-de Haas (SdH) oscillations used so far in this material our measurements demonstrate that the CRP provides a more accurate (about few percents) tool. Combining optical methods with transport measurements we found that the transport time substantially exceeds the cyclotron resonance lifetime as well as the quantum lifetime which is the shortest.Comment: 3 pages, 2 figure

    Quantum Oscillations of Photocurrents in HgTe Quantum Wells with Dirac and Parabolic Dispersions

    Get PDF
    We report on the observation of magneto-oscillations of terahertz radiation induced photocurrent in HgTe/HgCdTe quantum wells (QWs) of different widths, which are characterized by a Dirac-like, inverted and normal parabolic band structure. The photocurrent data are accompanied by measurements of photoresistance (photoconductivity), radiation transmission, as well as magneto-transport. We develop a microscopic model of a cyclotron-resonance assisted photogalvanic effect, which describes main experimental findings. We demonstrate that the quantum oscillations of the photocurrent are caused by the crossing of Fermi level by Landau levels resulting in the oscillations of spin polarization and electron mobilities in spin subbands. Theory explains a photocurrent direction reversal with the variation of magnetic field observed in experiment. We describe the photoconductivity oscillations related with the thermal suppression of the Shubnikov-de Haas effect.Comment: 16 pages, 13 figure

    Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures

    Get PDF
    We report a fast, room temperature detection scheme for the polarization ellipticity of laser radiation, with a bandwidth that stretches from the infrared to the terahertz range. The device consists of two elements, one in front of the other, that detect the polarization ellipticity and the azimuthal angle of the ellipse. The elements respectively utilise the circular photogalvanic effect in a narrow gap semiconductor and the linear photogalvanic effect in a bulk piezoelectric semiconductor. For the former we characterized both a HgTe quantum well and bulk Te, and for the latter, bulk GaAs. In contrast with optical methods our device is an easy to handle all-electric approach, which we demonstrated by applying a large number of different lasers from low power, continuous wave systems to high power, pulsed sources.Comment: 7 pages, 5 figure
    • …
    corecore