11,879 research outputs found
We are bitter, but we are better off: Case study of the implementation of an electronic health record system into a mental health hospital in England
In contrast to the acute hospital sector, there have been relatively few implementations of integrated electronic health record (EHR) systems into specialist mental health settings. The National Programme for Information Technology (NPfIT) in England was the most expensive IT-based transformation of public services ever undertaken, which aimed amongst other things, to implement integrated EHR systems into mental health hospitals. This paper describes the arrival, the process of implementation, stakeholders' experiences and the local consequences of the implementation of an EHR system into a mental health hospital
Methodological reflections on the evaluation of the implementation and adoption of national electronic health record systems
Copyright @ 2012, International Journal of Integrated Care (IJIC). This work is licensed under a (http://creativecommons.org/licenses/by/3.0) Creative Commons Attribution 3.0 Unported License.Introduction/purpose of presentation: Far-reaching policy commitments to information technology-centered transformations of healthcare systems have now been made in many countries. There is as yet little empirical evidence to justify such decisions, hence the need for rigorous independent evaluation of current implementation efforts. Such evaluations however pose a number of important challenges. This presentation has been designed as a part of a Panel based on our experience of evaluating the National Health Service’s (NHS) implementation of electronic health records (EHR) systems in hospitals throughout England. We discuss the methodological challenges encountered in planning and undertaking an evaluation of a program of this scale and reflect on why and how we adapted our evaluation approach—both conceptually and methodologically—in response to these challenges. Study design/population studied: Critical reflections on a multi-disciplinary and multi-facet independent evaluation of a national program to implement electronic health record systems into 12 ‘early wave’ NHS hospitals in England. Findings: Our initial plan was to employ a mixed methods longitudinal ‘before-during-after’ study design. We however found this unsustainable in the light of fluxes in policy, contractual issues and over-optimistic schedules for EHR deployments. More importantly, this research design failed adequately to address the core of multi-faceted evolving EHRs as understood by key stakeholders and as worked out in their distinct work settings. Thus conventional outcomes-centric evaluations may not easily scale-up when evaluating transformational programs and may indeed prove misleading. New assumptions concerning the implementation process of EHR need to be developed that recognize the constantly changing milieu of policy, product, projects and professions that are inherent to such national implementations. The approaches we subsequently developed substitute the positivist view that EHR initiatives are self-evident and self-contained interventions, which are amenable to traditional quantitative evaluations, to one that focuses on how they are understood by various stakeholders and made to work in specific contexts. These assumptions recast the role of evaluation towards an approach that explores and interprets processes of socio-technical change that surround EHR implementation and adoption as seen by multiple stakeholders. Conclusions and policy implications: There is likely to be an increase in politically-driven national programs of reform of healthcare based on information and communication technologies. Programs on such a scale are inherently complex with extended temporalities and extensive and dynamic sets of stakeholders. They are, in short, different and pose new evaluation challenges that previously formulated evaluation methods for health information systems cannot easily address. This calls for methodological innovation amongst research teams and their supporting bodies. We argue that evaluation of such system-wide transformation programs are likely to demand both breadth and depth of experience within a multidisciplinary research team, constant questioning of what is and what can be evaluated and how, and a particular way of working that emphasizes continuous dialogue and reflexivity. Making this transition is essential to enable evaluations that can usefully inform policy-making. Health policy experts urgently need to reassess the evaluation strategies they employ as they come to address national policies for system-wide transformation based on new electronic health infrastructures
Universal amplitude ratios in the 3D Ising Universality Class
We compute a number of universal amplitude ratios in the three-dimensional
Ising universality class. To this end, we perform Monte Carlo simulations of
the improved Blume-Capel model on the simple cubic lattice. For example, we
obtain A_+/A_-=0.536(2) and C_+/C_-=4.713(7), where A_+- and C_+- are the
amplitudes of the specific heat and the magnetic susceptibility, respectively.
The subscripts + and - indicate the high and the low temperature phase,
respectively. We compare our results with those obtained from previous Monte
Carlo simulations, high and low temperature series expansions, field theoretic
methods and experiments.Comment: 18 pages, two figures, typos corrected, discussion on finite size
corrections extende
Optical Lattice Induced Light Shifts in an Yb Atomic Clock
We present an experimental study of the lattice induced light shifts on the
1S_0-3P_0 optical clock transition (v_clock~518 THz) in neutral ytterbium. The
``magic'' frequency, v_magic, for the 174Yb isotope was determined to be 394
799 475(35)MHz, which leads to a first order light shift uncertainty of 0.38 Hz
on the 518 THz clock transition. Also investigated were the hyperpolarizability
shifts due to the nearby 6s6p 3P_0 - 6s8p 3P_0, 6s8p 3P_2, and 6s5f 3F_2
two-photon resonances at 759.708 nm, 754.23 nm, and 764.95 nm respectively. By
tuning the lattice frequency over the two-photon resonances and measuring the
corresponding clock transition shifts, the hyperpolarizability shift was
estimated to be 170(33) mHz for a linear polarized, 50 uK deep, lattice at the
magic wavelength. In addition, we have confirmed that a circularly polarized
lattice eliminates the J=0 - J=0 two-photon resonance. These results indicate
that the differential polarizability and hyperpolarizability frequency shift
uncertainties in a Yb lattice clock could be held to well below 10^-17.Comment: Accepted to PR
Finite size scaling of the correlation length above the upper critical dimension
We show numerically that correlation length at the critical point in the
five-dimensional Ising model varies with system size L as L^{5/4}, rather than
proportional to L as in standard finite size scaling (FSS) theory. Our results
confirm a hypothesis that FSS expressions in dimension d greater than the upper
critical dimension of 4 should have L replaced by L^{d/4} for cubic samples
with periodic boundary conditions. We also investigate numerically the
logarithmic corrections to FSS in d = 4.Comment: 5 pages, 6 postscript figure
Exact clesed form of the return probability on the Bethe lattice
An exact closed form solution for the return probability of a random walk on
the Bethe lattice is given. The long-time asymptotic form confirms a previously
known expression. It is however shown that this exact result reduces to the
proper expression when the Bethe lattice degenerates on a line, unlike the
asymptotic result which is singular. This is shown to be an artefact of the
asymptotic expansion. The density of states is also calculated.Comment: 7 pages, RevTex 3.0, 2 figures available upon request from
[email protected], to be published in J.Phys.A Let
Scaling of geometric phases close to quantum phase transition in the XY chain
We show that geometric phase of the ground state in the XY model obeys
scaling behavior in the vicinity of a quantum phase transition. In particular
we find that geometric phase is non-analytical and its derivative with respect
to the field strength diverges at the critical magnetic field. Furthermore,
universality in the critical properties of the geometric phase in a family of
models is verified. In addition, since quantum phase transition occurs at a
level crossing or avoided level crossing and these level structures can be
captured by Berry curvature, the established relation between geometric phase
and quantum phase transitions is not a specific property of the XY model, but a
very general result of many-body systems.Comment: 4 page
Dynamic Magnetization-Reversal Transition in the Ising Model
We report the results of mean field and the Monte Carlo study of the dynamic
magnetization-reversal transition in the Ising model, brought about by the
application of an external field pulse applied in opposition to the existing
order before the application of the pulse. The transition occurs at a
temperature T below the static critical temperature T_c without any external
field. The transition occurs when the system, perturbed by the external field
pulse competing with the existing order, jumps from one minimum of free energy
to the other after the withdrawal of the pulse. The parameters controlling the
transition are the strength h_p and the duration Delta t of the pulse. In the
mean field case, approximate analytical expression is obtained for the phase
boundary which agrees well with that obtained numerically in the small Delta t
and large T limit. The order parameter of the transition has been identified
and is observed to vary continuously near the transition. The order parameter
exponent beta was estimated both for the mean field (beta =1) and the Monte
Carlo beta = 0.90 \pm 0.02 in two dimension) cases. The transition shows a
"critical slowing-down" type behaviour near the phase boundary with diverging
relaxation time. The divergence was found to be logarithmic in the mean field
case and exponential in the Monte Carlo case. The finite size scaling technique
was employed to estimate the correlation length exponent nu (= 1.5 \pm 0.3 in
two dimension) in the Monte Carlo case.Comment: 13 pages, latex, 8 figure
- …