7,451 research outputs found
Relating on-shell and off-shell formalism in perturbative quantum field theory
In the on-shell formalism (mostly used in perturbative quantum field theory)
the entries of the time ordered product T are on-shell fields (i.e. the basic
fields satisfy the free field equations). With that, (multi)linearity of T is
incompatible with the Action Ward identity. This can be circumvented by using
the off-shell formalism in which the entries of T are off-shell fields. To
relate on- and off-shell formalism correctly, a map sigma from on-shell fields
to off-shell fields was introduced axiomatically by Duetsch and Fredenhagen. In
that paper it was shown that, in the case of one real scalar field in N=4
dimensional Minkowski space, these axioms have a unique solution. However, this
solution was given there only recursively. We solve this recurrence relation
and give a fully explicit expression for sigma in the cases of the scalar,
Dirac and gauge fields for arbitrary values of the dimension N.Comment: The case of gauge fields was added. 16 page
Massive gravity from descent equations
Both massless and massive gravity are derived from descent equations
(Wess-Zumino consistency conditions). The massive theory is a continuous
deformation of the massless one.Comment: 8 pages, no figur
Analytical Results for Random Band Matrices with Preferential Basis
Using the supersymmetry method we analytically calculate the local density of
states, the localiztion length, the generalized inverse participation ratios,
and the distribution function of eigenvector components for the superposition
of a random band matrix with a strongly fluctuating diagonal matrix. In this
way we extend previously known results for ordinary band matrices to the class
of random band matrices with preferential basis. Our analytical results are in
good agreement with (but more general than) recent numerical findings by
Jacquod and Shepelyansky.Comment: 8 pages RevTex and 1 Figure, both uuencode
The Interaction of Quantum Gravity with Matter
The interaction of (linearized) gravitation with matter is studied in the
causal approach up to the second order of perturbation theory. We consider the
generic case and prove that gravitation is universal in the sense that the
existence of the interaction with gravitation does not put new constraints on
the Lagrangian for lower spin fields. We use the formalism of quantum off-shell
fields which makes our computation more straightforward and simpler.Comment: 25 page
Causal perturbation theory in terms of retarded products, and a proof of the Action Ward Identity
In the framework of perturbative algebraic quantum field theory a local
construction of interacting fields in terms of retarded products is performed,
based on earlier work of Steinmann. In our formalism the entries of the
retarded products are local functionals of the off shell classical fields, and
we prove that the interacting fields depend only on the action and not on terms
in the Lagrangian which are total derivatives, thus providing a proof of
Stora's 'Action Ward Identity'. The theory depends on free parameters which
flow under the renormalization group. This flow can be derived in our local
framework independently of the infrared behavior, as was first established by
Hollands and Wald. We explicitly compute non-trivial examples for the
renormalization of the interaction and the field.Comment: 76 pages, to appear in Rev. Math. Phy
Theory of thermal spin-charge coupling in electronic systems
The interplay between spin transport and thermoelectricity offers several
novel ways of generating, manipulating, and detecting nonequilibrium spin in a
wide range of materials. Here we formulate a phenomenological model in the
spirit of the standard model of electrical spin injection to describe the
electronic mechanism coupling charge, spin, and heat transport and employ the
model to analyze several different geometries containing ferromagnetic (F) and
nonmagnetic (N) regions: F, F/N, and F/N/F junctions which are subject to
thermal gradients. We present analytical formulas for the spin accumulation and
spin current profiles in those junctions that are valid for both tunnel and
transparent (as well as intermediate) contacts. For F/N junctions we calculate
the thermal spin injection efficiency and the spin accumulation induced
nonequilibrium thermopower. We find conditions for countering thermal spin
effects in the N region with electrical spin injection. This compensating
effect should be particularly useful for distinguishing electronic from other
mechanisms of spin injection by thermal gradients. For F/N/F junctions we
analyze the differences in the nonequilibrium thermopower (and chemical
potentials) for parallel and antiparallel orientations of the F magnetizations,
as evidence and a quantitative measure of the spin accumulation in N.
Furthermore, we study the Peltier and spin Peltier effects in F/N and F/N/F
junctions and present analytical formulas for the heat evolution at the
interfaces of isothermal junctions.Comment: to be published in PRB (in press), 19 pages, 19 figure
Optical lattice quantum simulator for QED in strong external fields: spontaneous pair creation and the Sauter-Schwinger effect
Spontaneous creation of electron-positron pairs out of the vacuum due to a
strong electric field is a spectacular manifestation of the relativistic
energy-momentum relation for the Dirac fermions. This fundamental prediction of
Quantum Electrodynamics (QED) has not yet been confirmed experimentally as the
generation of a sufficiently strong electric field extending over a large
enough space-time volume still presents a challenge. Surprisingly, distant
areas of physics may help us to circumvent this difficulty. In condensed matter
and solid state physics (areas commonly considered as low energy physics), one
usually deals with quasi-particles instead of real electrons and positrons.
Since their mass gap can often be freely tuned, it is much easier to create
these light quasi-particles by an analogue of the Sauter-Schwinger effect. This
motivates our proposal of a quantum simulator in which excitations of
ultra-cold atoms moving in a bichromatic optical lattice represent particles
and antiparticles (holes) satisfying a discretized version of the Dirac
equation together with fermionic anti-commutation relations. Using the language
of second quantization, we are able to construct an analogue of the spontaneous
pair creation which can be realized in an (almost) table-top experiment.Comment: 21 pages, 10 figure
The Galaxy Cluster Luminosity-Temperature Relationship and Iron Abundances - A Measure of Formation History ?
Both the X-ray luminosity-temperature (L-T) relationship and the iron
abundance distribution of galaxy clusters show intrinsic dispersion. Using a
large set of galaxy clusters with measured iron abundances we find a
correlation between abundance and the relative deviation of a cluster from the
mean L-T relationship. We argue that these observations can be explained by
taking into account the range of cluster formation epochs expected within a
hierarchical universe. The known relationship of cooling flow mass deposition
rate to luminosity and temperature is also consistent with this explanation.
From the observed cluster population we estimate that the oldest clusters
formed at z>~2. We propose that the iron abundance of a galaxy cluster can
provide a parameterization of its age and dynamical history.Comment: 13 pages Latex, 2 figures, postscript. Accepted for publication in
ApJ Letter
Perturbative Gravity in the Causal Approach
Quantum theory of the gravitation in the causal approach is studied up to the
second order of perturbation theory. We prove gauge invariance and
renormalizability in the second order of perturbation theory for the pure
gravity system (massless and massive). Then we investigate the interaction of
massless gravity with matter (described by scalars and spinors) and massless
Yang-Mills fields. We obtain a difference with respect to the classical field
theory due to the fact that in quantum field theory one cannot enforce the
divergenceless property on the vector potential and this spoils the
divergenceless property of the usual energy-momentum tensor. To correct this
one needs a supplementary ghost term in the interaction Lagrangian.Comment: 50 pages, no figures, some changes in the last sectio
- …
